Shaders

Recall: Lighting Equation

- Multiplying the BRDF by an incoming irradiance gives the outgoing radiance $dL_{o\ due\ to\ i}(\omega_i,\omega_o) = BRDF(\omega_i,\omega_o)dE_i(\omega_i)$
- For even more realistic lighting, we'll bounce light all around the scene
- It's tedious to convert between E and L, so use $dE = Ld\omega \cos \theta$ to obtain: $dL_{o,due,to,i}(\omega_i,\omega_o) = BRDF(\omega_i,\omega_o)L_id\omega_i \cos \theta_i$
- Then,

$$L_o(\omega_o) = \int_{i \in in} BRDF(\omega_i, \omega_o) L_i \cos \theta_i \, d\omega_i$$

Recall: Area Lights

- Light power is emitted per unit area (not from a single point)
- The emitted light goes in various directions (measured with solid angles)

- Break an area light up into (infinitesimally) small area chunks
- Each area chunk emits light into each of the solid angle directions
 - i.e. radiant intensity per area chunk
- Each emitted direction also has a cosine term (similar to irradiance)

Radiance – radiant intensity per area chunk

$$L = \frac{dI}{dA \cos\theta_{light}} \left(= \frac{d^2\Phi}{d\omega \, dA \cos\theta_{light}} = \frac{dE}{d\omega \cos\theta_{light}} \right)$$

Recall: Solid Angle vs. Cross-Sectional Area

• The (orthogonal) cross-sectional area is $dA \cos\theta$

• So, $d\omega = \frac{dA_{sphere}}{r^2} = \frac{dA \cos \theta}{r^2}$ (solid angle varies with tilting θ and distance r)

Point Lights

- Assume incoming light only comes from a single point light source (with direction ω_{light})
- Then the BRDF and the cosine terms are approximately constant:

$$L_o(\omega_o) = BRDF(\omega_{light}, \omega_o) \cos \theta_{light} \int_{i \in in} L_i d\omega_i$$

- Since $L=\frac{dI}{dA\cos\theta}$ and $d\omega=\frac{dA\cos\theta}{r^2}$, the integral becomes $\int_{i\in in}\frac{dI}{r^2}=\frac{I}{r^2}$
- If objects are approximately equidistant from the light (e.g. the sun), then r is approximately constant and can be folded into I_{light} to get \tilde{I}_{light} :

$$L_o(\omega_o) = BRDF(\omega_{light}, \omega_o) \cos \theta_{light} \tilde{I}_{light}$$

• For each channel (R,G,B), sum over all the point lights:

$$L_o(\omega_o) = \sum_{j=1}^{\#lights} BRDF(\omega_j, \omega_o) \cos \theta_j \, \tilde{l}_j$$

Point Light Drawbacks

- All the lighting from other objects in the scene is turned off
- Thus, the scene is overall darker, there is no color bleeding, etc.
- Surfaces occluded from all point light sources are completely black
- Shadows have harsh boundaries
- Objects closer to a light source are not brighter than those father away (variance with radius has been removed)
- Etc.

Point Light Examples

Point Light

• Light emitted from a single point in space, outwards in every direction

Spotlight

- Angular subset of a point light
- Prune directions a cutoff angle away from a central direction (use a dot product)

Directional Light

- Always use the the same incoming ray direction
- Models a far away point light (like the sun)

Area Lights (approximated by point lights)

- Light is emitted from a surface (objects behind the surface are not illuminated)
- Can approximate by distributing a (large) number of point lights across the surface
- The sum of the strengths of all the point lights should equal the strength of the area light
- Creates softer shadows!

Volume Lights (approximated by point lights)

Distribute a (large) number of point lights throughout the volume

Diffuse Materials

- Reflects light equally in all directions, independent of the incoming direction
- This can happen when a rough surface (with many tiny microfacets) reflects incoming light outwards in every possible direction:

- The BRDF doesn't depend on incoming/outgoing directions, and thus is simply a constant
- $BRDF(\omega_i, \omega_o) = k_d$ and $L_o = k_d \cos \theta_{light} \tilde{I}_{light}$

Diffuse Materials

- Shading depends on the position of the light source (because of the cosine term)
- Shading does not depend on the position of the viewer/camera
- Good approximation of diffuse/dull/matte surfaces (such as chalk)

• An object with (diffuse) color (k_d^R, k_d^G, k_d^B) hit by a light with color $(\tilde{I}^R, \tilde{I}^G, \tilde{I}^B)$ results in:

$$(L_o^R, L_o^G, L_o^B) = (k_d^R \tilde{I}^R, k_d^G \tilde{I}^G, k_d^B \tilde{I}^B) \max(0, -\widehat{\omega}_{light} \cdot \widehat{N})$$

Ambient Lighting

- Useful for adding light in regions obscured from all the light sources
- Ignores the incident light direction (drops the cosine term)
- An ambient light (I_a^R, I_a^G, I_a^B) on an object with (ambient) color (k_a^R, k_a^G, k_a^B) results in:

$$(L_o^R, L_o^G, L_o^B) = (k_a^R I_a^R, k_a^G I_a^G, k_a^B I_a^B)$$

Vertex Colors

• k_a and k_d values are stored on the vertices p_0 , p_1 , p_2 of triangles

• Given a sub-triangle point p, compute barycentric weights: $p=\alpha_0p_0+\alpha_1p_1+\alpha_2p_2$

• Then, compute $k=\alpha_0k_0+\alpha_1k_1+\alpha_2k_2$ to interpolate all relevant k values (R, G, B for

ambient/diffuse)

Flat Shading

- The change in normal direction from one triangle to another allows one to see individual triangles (as expected)
- This can be alleviated by using more and more triangles (but that's computationally expensive)

(Averaged) Vertex Normals

- Each vertex belongs to a number of triangles, each with their own normal
- Averaging those normals (weighted averaging, based on: area, angle, etc.) gives a unique normal for each vertex

Smooth Shading

• Use barycentric weights to interpolate (averaged) vertex normals to the interior of the triangle:

$$\widehat{N}_{p} = \frac{\alpha_{0}\widehat{N}_{0} + \alpha_{1}\widehat{N}_{1} + \alpha_{2}\widehat{N}_{2}}{\|\alpha_{0}\widehat{N}_{0} + \alpha_{1}\widehat{N}_{1} + \alpha_{2}\widehat{N}_{2}\|_{2}}$$

Flat vs. Gouraud vs. Phong (Shading)

- Flat: use the actual normal, i.e. the real geometry (you can see the triangles)
- <u>Gouraud</u>: use (averaged) vertex normals; but, evaluate the BRDF at each vertex and interpolate the resulting colors to the triangle interior
- <u>Phong</u>: use (averaged) vertex normals, and interpolate those normals to the triangle interior (smooth shading)

*Don't mix up Phong shading with the Phong reflection model

Edges and Corners

- Normals are poorly defined and difficult to compute at edges/corners
- Averaging vertex normals creates unrealistic-looking edges/corners
- Different types of shading can be used on different parts of the same object (in fact, the same triangle may require both flat and smooth shading)

smooth

Phong Reflection Model

• Ambient, Diffuse, and Specular lighting (specular approximates glossy surfaces)

$$L_{o}(\boldsymbol{\omega_{o}}) = \sum_{j=1}^{\#lights} k_{a} I_{a}^{j} + k_{d} \tilde{I}_{d}^{j} \max(0, -\widehat{\boldsymbol{\omega}_{light}} \cdot \widehat{N}) + k_{s} \tilde{I}_{s}^{j} \max(0, \widehat{\boldsymbol{\omega}_{o}} \cdot \widehat{D}_{reflect})^{s}$$
Ambient Diffuse Specular

Recall: Reflected Ray

- Given an incoming ray R(t) = A + Dt, and (outward) unit normal \widehat{N} , the angle of incidence is defined via $D \cdot \widehat{N} = -\|D\|_2 \cos \theta_i$
- Mirror reflection: incoming/outgoing rays make the same angle with \widehat{N} , i.e. $\theta_o = \theta_i$
 - Note: all the rays and the normal are all coplanar
- Reflected ray direction: $D_{reflect} = D 2(D \cdot \widehat{N})\widehat{N}$
- Reflected ray: $R_{reflect}(t) = R(t_{int}) + D_{reflect}t$

Specular Highlights

- For a glossy (but not completely mirror-like) surface, microscopic spatial variation (of normals) smooths reflections into a lobe
- Intensity falls off as the viewing direction differs from the mirror reflection direction:

$$L_o(\omega_o) = k_s \, \tilde{I}_{light} \, max(0, \widehat{\omega}_o \cdot \widehat{D}_{reflect})^s$$

Shininess Coefficient

- A shininess coefficient s determines the size of the lobe
- A larger s gives a smaller highlight (converging to mirror reflection as $s \to \infty$)

$$L_o(\omega_o) = k_s \, \tilde{I}_{\text{light max}} \left(0, \widehat{\omega}_o \cdot \widehat{D}_{reflect}\right)^s$$

Anisotropic Specular Highlights

• There are various other (impressive) approximations to specular highlights as well

isotropic

anisotropic