CS148 Homework 3 - Ray Tracing

Grading on Monday, Oct 16th

0.1 Assignment Outline

Flat Shading + Blinn-Phong + Reflection + Transmission
with Shadow Ray + Ambient + Fresnel

This is the first coding intensive assignment of the class and will take significantly
longer to finish than the first two assignments! Please start early!

Your task is to finish the code for a Python ray tracer that interacts with the above scene in
Blender. We'’ve already created the scene for you in Blender and have set up the code infrastructure
to access information from the scene using Blender’s Python API. You can find the scene and
code all in the following file: HW3 Blend File.

The provided code is missing the key lines of code that are needed to properly render the scene
as a ray traced image. The above image shows the four steps of ray tracing that are currently
missing in the code. Your job is to fill in the missing code for each of these steps, which
are further elaborated as m TODO items in this PDF. The power of ray tracing
mostly lies in the last two, right-most steps, where reflections and transmissions are added to the
objects. This is a feat that scanline renderers cannot do with physical correctness.

0.2 Collaboration Policy, Office Hours, and Grading Session

All policies from here on are the same as they were for HW2. See the HW2 document for details.


https://web.stanford.edu/class/cs148/hws/hw3/cs148-hw3.blend

Quiz Questions (1 pt)

You will be randomly asked one of these questions during the grading session:

e Describe two of the ways we discussed in class on how to compute a ray-triangle
intersection. You do not need to provide all the mathematical details. Just give
enough of the high-level ideas to show that you understand the approaches.

e Why is transforming a normal vector between object and world space different from
transforming an object between those spaces?

e Explain the idea of total internal reflection. Conceptually, when does this happen, and
what effect does it have on the transmission of light through a material?

e What does Beer’s Law say about light as it travels through a medium? How does the
attenuation coefficient come into play with modifying the light intensity appropriately
as the light travels through some distance?

Fun fact: if we wanted to be fully correct with our ray tracer code, then we should be
implementing Beer’s Law for transmissive rays as they go through (e.g. glass) objects.
However, we aren’t doing it here for simplicity.

1 Setting up the Assignment

1.1 Starting Blender from the Command Line

Like before in HW2, since you will be doing Python development in Blender, you will want to launch
Blender from the command line. Doing so will let Blender output any bugs or any information you
explicitly print via the Python print() function to the command line. Here’s a review of how to
launch Blender from the command line:

e Windows: Press the Windows + R keys on your keyboard to open the “Run” box. Type
cmd and hit enter to open the command prompt.
cd to the Blender installation directory. The default location is

C:\Program Files\Blender Foundation\Blender 3.5 .

In the Blender installation directory, type Blender.exe to launch Blender. The following
image shows the above steps in action launching a past version of Blender.

erpref.blend

e Mac: Please refer to the official document linked here.

e Linux: Please refer to the official document linked here.


https://docs.blender.org/manual/en/3.5/advanced/command_line/launch/macos.html
https://docs.blender.org/manual/en/3.5/advanced/command_line/launch/linux.html

Blender will launch as usual. Open the .blend file that came with this homework from the menu
bar, i.e. File — Open . You should see a workspace layout similar to the following:
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Temnplates B~ s

Camera Perspective
(57) Camera | Camera

We’ve set up three main sections for you in the Ul:
1. Left: Text Editor. We can edit and run the code in this space.
2. Top right: 3D Viewport. We can manipulate and preview the scene in this area.

3. Bottom right: Image Editor. We can view the render result as an image here.

1.2 The Text Editor

m In the Text Editor, you can switch between files using the dropdown button. Browse to
a script called simpleRT _Ulpanels and run it.
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Remember that to run a script, press the “Run Script” button on the top bar of the Text Editor.
Alternatively, if you do not see the button, then you can still run the script from the menu bar
above the Text Editor with Text — Run Script . Nothing should appear in the command line if
the script is executed successfully.
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The simpleRT _Ulpanels script creates custom properties that will be used for our renderer such
as material properties, light parameters, etc. It then exposes these properties through the Blender
UI so that we can change them easily from user interface widgets. If none of that made sense to
you, then don’t worry about it. Just know that we need to run the simpleRT _Ulpanels script
every time we launch the .blend file for this HW before we can work with the main
script!

Switch back to the simpleRT _plugin and run it. To check if everything is working, switch the
Render Engine to SimpleRT from the Properties Editor. This is the new render engine that we
just added to Blender by running the script. We will work on this render engine in this homework.

The Ul in the Properties Editor should be refreshed. You should see the SimpleRT Render Settings

panel in the Render tab and the SimpleRT Dimensions panel in the Output tab. If you still see
the UI panels from other render engines, press F3 with your cursor in the 3D Viewport, and type
reload script ; hit Enter to reload all the plugins.
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SimpleRT Render Settings
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1.3 Editing and Debugging
m Your task is to edit the simpleRT _plugin to finish all the TODOs. Blender has a very

friendly development environment compared to other 3D software, but it is still not on par with
professional Python IDEs or professional text editors. Most debugging information will be
displayed in the command line window from which you launched Blender. As an example,
try typing some gibberish (e.g. “asdfghjkl”) on a new line in the simpleRT plugin script. If you
then run the script, then try to render (see next subsection), then you should get an error thrown
in the command line that says: NameError: name ‘asdfghjkl’ is not defined Furthermore, you

can write print() statements in the simpleRT plugin script and expect to see the print out in
the command line.

There are some handy shortcuts in the Text Editor. You'll likely use the formatting operations
the most:

e Tab for indent
e Shift + Tab for unindent

e Ctrl + / or Cmd + / to toggle comments

For more shortcuts in the Text Editor, please see the Blender documentation.

There is optionally a Python Console in the Blender user interface. You can see the documenta-
tion here and can use it as an interactive Python shell. Additionally, the Info Editor can be useful
to display logs, warnings, and error messages. Both of these tools can make your development life
easier in Blender if you master them, but when we’re just starting out, simply working with the
command line and print() statements should be enough for debugging.

1.4 Rendering and Saving
After you make edits to the simpleRT plugin script, run the script again, and hit F12 to start

the render. Alternatively, you can start the render by going to Render — Render Image in the
top menu bar. Note that we are using Render Image with this makeshift render engine like we

do with Cycles, as opposed to Render Animation for the Workbench render engine.
You should see the rendered image appear in the Image Editor and a progress bar in the bottom
status bar:

Furthermore, the provided code in the simpleRT _plugin script should also be printing the elapsed

and remaining time for the render in the command line. You can press the Esc keyboard key at
any time to stop the render.

When the rendering is done, you can use Image — Save Image or Alt/Option + S from the
keyboard to save the result. With the starter code, the image should render a completely
black image.

1.5 Speeding up Rendering with Lower Resolution

To speed things up while you're debugging, you should keep the image resolution low to make
the renders fast (since the speed is based on iterations over the number of pixels). After the low-
resolution image looks correct, crank up the resolution and render a higher resolution image for
submission.


https://docs.blender.org/manual/en/3.5/editors/text_editor.html
https://docs.blender.org/manual/en/3.5/editors/python_console.html
https://docs.blender.org/manual/en/3.5/editors/python_console.html
https://docs.blender.org/manual/en/3.5/editors/info_editor.html

A quick and easy way to change the resolution is to change the resolution percentage from the
Properties Editor. Go to the Output tab for the SimpleRT Dimensions panel. You can modify

the % option to shrink the image resolution without changing the aspect ratio. Usually 25-50%
is a good place to start and should hopefully keep your render time under 10 seconds (though it
can depend on your computer specs). You will of course get a very aliased (blurry) result, but you
should be able to tell if your code is working from this image.

After the image looks right to you, change the percentage back to 100 for a higher resolution
image. The render will likely take a few minutes, but with this resolution, you should be able to
check all the details.

1.6 Comparing Render Results

In the Image Editor, you can store up to 8 rendered images in slots and toggle between them
afterward. This could be helpful when comparing the results from different versions of code, or
different material properties.

To render the image to a certain slot, select that slot before rendering:

M~ ] view ~ View Image [a’]~ Render Result D C e x w | lenc
Frame:1 | Tme:00:01.89 | Mem:42.59M (0.00M, Peak 48.95M)

To toggle between the slots, you can use the number keys to go to the slot with the corresponding
number (turn off Emulate Numpad from the Preferences ) or press J and Alt + J to cycle
forwards and backwards through saved renders respectively. You can see the Blender documentation
for more details.

2 Assignment Checkpoints

All the TODOs are listed as comments in the simpleRT _plugin script. We recommend first reading
the TODO descriptions in this PDF document first, then go to the sections in the code. The sample
images in this PDF are rendered at 200%. Expect to see more aliasing in your images.

For those curious, the ray-object intersection logic is taken care of by the scene.ray cast
function from Blender. Our focus in this homework will be on how to use the information from the
intersection to figure out the correct color calculations and light bounces.


https://docs.blender.org/manual/en/3.5/editors/image/introduction.html

2.1 TODO 1 (0.5 pt): Shadow Rays

Save the image render of this checkpoint at 960 x 540 resolution for grading!

We discussed how to represent shadow rays and rays in general mathematically in lecture, but
we need to think of these concepts from a different angle when representing them in code. Consider
what defines a ray — you need an origin point and a vector direction.

The origin point is simply an xyz-coordinate in Cartesian space written as a vector. For instance,
1
if we want to call the point at (1,1,1) “point a”, then we can write @ = |1
1

A vector direction is geometrically an arrow pointing from a start point to an end point. Call
the start point @ and the end point . Then the vector direction from @ to b is computed as the
difference b — @, i.e. the end point minus the start point.

For purposes that will become clearer later in this homework, it is often good practice to
normalize direction vectors after you compute them. Normalizing vectors means making them
unit vectors, i.e. giving them unit length. Mathematically, we do this by dividing the vector by its
magnitude or size. In Python, there is a convenient .normalized() function that you can use. As

an example: my_normalized_version_of_v = v.normalized() .

When we ray trace, we start by shooting a ray that starts from our camera or eye. That is the
origin point of the ray. The direction of the ray is the vector direction starting from the camera
and ending at a pixel (call it p) on our film plane. We continue tracing along this direction past our
film plane into our scene until we hit aka intersect an object. When we finally intersect an object,
we start doing operations to compute the color that the ray should gather from the object. This
color is then added to a running sum keeping track of the color of the pixel p for rendering.

For this part of the homework, you need to:

1. Construct the shadow ray(s).

Conceptually, a shadow ray is a ray that starts from the intersection of the ray that we are
ray tracing and the object it hits. In the code this intersection is given to you as hit_loc .
That is the origin of the shadow ray.

The vector direction of a shadow ray is the vector starting from the intersection point and
ending at a light. Notice how the TODO in the code is within a loop over all the lights. You
can access the position of the light in the current iteration of the loop with light.location .

You need to compute both the shadow ray origin and the shadow ray direction.

2. Account for spurious self-occlusion.

You need to modify the shadow ray origin slightly to account for spurious self-occlusion as
discussed in lecture. The normal direction at the intersection has been provided for you as
hit norm | and a small € value has been given to you as eps (it’s just simply 1073, i.e. some
small number). Note that we talked about two ways to handle self-occlusion in lecture — both
methods should work here for shadow rays, but they can vary in their image results by a few
pixels, and that is fine. It should still be obvious whether the image is correct.

You should get close to the following image if you’ve coded everything correctly:



2.2 TODO 2 (0.5 pt): Diffuse and Specular BRDF Components

m Save the image render of this checkpoint at 960 x 540 resolution for grading!

Read the comments above the TODO 2 in the script carefully on how to compute the diffuse
color as discussed in lecture. Then, pattern match your code to do the same for the specular
color (which will be discussed in a later lecture, but is necessary here for the full visual effect).
Note that you may need to convert the diffuse and specular color variables to Python arrays with
np.array to avoid a type mismatch when multiplying it with the light intensity. This is because
the color variables are declared as Python vectors, but need to be converted to Python arrays for
an element-wise multiplication with another Python array.

To compute the dot product of two vectors in Python, you can use the .dot() function. For

instance, the dot product between vectors ¢, and ¥ would be: vl.dot(v2) .
You should get the following image if you’ve coded everything for the diffuse color correctly:




You should now get the following image, with shiny highlights on the yellow half sphere, if
you’ve coded everything for the specular color correctly:

2.3 TODO 3 (0.5 pt): Ambient BRDF Component

m Save the image render of this checkpoint at 960 x 540 resolution for grading!

We will compute the ambient contribution as the product of the material diffuse color and the
material ambient color here. Like in the last step, you may need to convert the diffuse color to a
Python array with np.array to avoid a type mismatch.

You should get the following image if you've coded everything correctly. Notice how the shadow
of the black block on the orange half disc has gotten lighter.




2.4 TODO 4 (1 pt): Recursion and Reflection

Save the image render of this checkpoint at 960 x 540 resolution for grading!

Suppose our ray is initially traced as the purple ray and intersects the blue edge of a reflective
object. The ray gets reflected by the object to then continue in a different direction from which it
began. In code, we represent the reflected ray as an entirely new ray object. This new reflected
ray is represented by the light-green ray in the diagram pointing to the lower-right.

To represent a new ray object, we need the new ray origin and the new ray direction. Once
we have these two characteristics to define the reflected ray, we need to trace the new ray. This is
done via recursion in code by calling the RT _trace_ray function within itself.

The 2nd and 3rd arguments to the RT trace ray function ask for a ray origin and ray direction

respectively. To trace the new, reflected ray, we simply just need to call the RT _trace_ray function
with the reflected ray’s new ray origin and the reflected ray’s new ray direction.

1. First, you need to compute the direction of the reflected ray as covered in lecture.

Note the purpose of the dot product in the equation for D,..fj.;. The dot product between
two unit, normalized vectors is the cosine of the angle between them. So the two vectors
involved in this dot product should be normalized beforehand. These two vectors are the
original ray direction and the normal vector to the surface that the original ray intersected.

2. After you have the reflected ray direction, you need to compute the new origin of the reflected
ray. Naively, you may think this is simply the intersection point, i.e. hit_loc in the code.
However, you need to account for spurious self-occlusion as discussed in lecture and offset
this intersection point in the normal direction by some small e value.

3. Once you have the new origin and the new direction of the reflected ray, you need to recursively
trace the ray. This is done by calling the function RT trace ray with the ray origin and ray
direction arguments replaced with the new origin and new direction of your reflected ray.

Note that throughout the RT trace ray function, you use the passed in ray direction ar-
gument for various dot products, which all want normalized vectors. So as a good general
practice, you want to normalize the reflected ray direction when passing it into the function.

You should also pass in depth - 1. We use the depth variable to keep track of how many
recursive steps we take before terminating.

10



4. The function RT _trace ray returns a color. This is the color gathered by the reflected ray
when it finally terminates. We call this the reflection color aka Ly fiect-

Lyefiect is then weighted by the object material’s reflectivity value, usually written as k.. It
is this weighted color that is then added to a running sum of the color that we are computing
for the pixel.

You should get the following image if you've coded everything correctly. Notice how the bowl
at the top as well as the blue cube now reflect objects in the scene.

2.5 TODO 5 (0.5 pt): Fresnel

m Save the image render of this checkpoint at 960 x 540 resolution for grading!

The Fresnel equations model the change in the strength of a reflection based on the angle
that our ray makes with the object it intersects (aka the angle of incidence). The equations can
be simplified with Schlick’s Approximation as discussed in lecture to compute a reflectivity value
R(#), also commonly written as k.

When computing the Ry ratio, remember that n; is always the index of refraction (IOR) of the
medium in which the ray starts. ny is always the IOR of the medium that the ray intersects. In
the scene for the homework, all reflections occur from a ray originating from the air and bouncing
off an object. So, ny is always the IOR of air, which is 1, and ny should be the IOR for the object,
which is given to you as mat.ior .

To compute the cosine term for Schlick’s Approximation, remember that the dot product be-
tween two unit, normalized vectors is the cosine of the angle between them. The angle we are
examining is the angle between the ray direction vector and the object’s surface, which is repre-
sented by the normal vector at the intersection.

You should get the following image if you’'ve coded everything correctly. Notice the reflections
of the ground and orange half-disc on the black block.

11



2.6 TODO 6 (1 pt): Transmission
m Save the image render of this checkpoint at 960 x 540 resolution for grading!

See the picture on the right. Suppose our ray is initially traced
as the purple ray and intersects the blue edge of a transparent object.
Due to the material properties of the object, the purple ray is refracted
and then transmitted through the object. In code, we represent the
transmitted ray as an entirely new ray object. This new transmitted ray
is represented by the light-green (middle) ray in the diagram.

Now, suppose instead of the purple ray, the ray that we are examining
in our recursion is actually the light-green (middle) ray in the diagram.
This ray originated inside an object and is traced until it intersects the
orange edge of the object. The ray is then refracted and transmitted
out of the object into the air. In code, we represent the transmitted ray
as an entirely new ray object. In the diagram, the transmitted ray is
represented by the orange ray.

In both cases, we represent the transmitted ray as an entirely new
ray object. As you should know by now, to represent a new ray object,
we need both the new ray origin and the new ray direction. Furthermore,
we need to recursively trace the new ray by calling the RT _trace_ray
function again with the new ray origin and the new ray direction.

n
1. First, you need to compute the index of refraction (IOR) ratio: L. The tricky part here
n

is that n; and ng change depending on where the ray starts. np is always the IOR of the
medium in which the ray starts for the transmission. ny is always the IOR of the medium in
which the ray ends up for the transmission.

So if the object is starting in the air and is going through a transparent object to end up
inside the object, then ny should be the IOR for air, which is 1, and no should be the IOR
for the object, which is given to you as mat.ior .

12



On the flip side, if the ray starts inside the transparent object and is going through it to end
up in the air, then the values flip. You can check if the ray starts inside the object with the
ray_inside_object boolean.

. Once you have the IOR ratio, then you can compute the direction of the transmitted ray as
discussed in lecture. One thing to note is that you need to account for total internal reflection.

You only proceed with computing Dy, qnsmit if there is no total internal reflection.

. Similar to the previous steps, you need to recursively trace the ray. Again, this is done by
calling the function RT trace ray again with the ray origin and ray direction arguments
replaced with the new origin and new direction of your transmitted ray.

The origin of your transmitted ray is the intersection point, aka hit_loc . But also remember
that you need to account for spurious self-occlusion. It’s a bit trickier in this case because
transmitted rays are going through the object (as opposed to reflected rays which are bouncing
off the object). This means you'll have to handle the € offset in the normal direction slightly
different from what you did in the reflection case.

The direction of the transmitted ray is your computed Dypqnsmit- Remember to normalize it,
because it will be used in the dot products that you wrote for the previous steps throughout
the recursion.

Remember to also pass in depth - 1.

. As with the previous steps, the RT trace ray function returns a color. In this case, it’s the
transmission color, aka the color gathered by the transmitted ray when it finally terminates:
Liransmit- The transmissiveness and reflectivity (k) of an object are theoretically supposed
to add up to 1, so we weight the returned color by (1 — k,) as well as the object material’s
transmission properties given in mat.transmission . After weighting the returned color with
these values, we add it to running sum of the pixel color like we did in the previous TODOs.

You should get the following image if you’ve coded everything correctly. Notice how the black
block has turned into glass, allowing you to see the orange cone through it.
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NOTE: The above is the expected output for those working on Blender versions 3.5 and earlier.
Starting in Blender 3.6, a slight update in the software now results in the following variation in the
transmission of the cone through the glass block:

This variation is fine and is considered correct.
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