
Triangles



Lots of Triangles

Stanford Bunny
69,451 triangles

David (Digital Michelangelo Project)
56,230,343 triangles 



Why Triangles?
• Can focus on specializing/optimizing everything for (just) triangles
• Optimize software and algorithms for just triangles
• Optimize hardware (e.g. GPUs) for just triangles

• Triangles have many inherent benefits:
• Complex objects are well-approximated using enough triangles (piecewise linear 

convergence)
• Easy to break other polygons into triangles
• Triangles are guaranteed to be planar (unlike quadrilaterals)
• Transformations (from last lecture) only need be applied to triangle vertices
• Robust barycentric interpolation can be used to interpolate information stored on vertices to 

the interior (of the triangle)
• Etc.



OpenGL
• Blender uses OpenGL for real-time scanline renderering

• OpenGL was started by SGI in 1991 (went into the public domain in 2006)
• It's a drawing API for 2D/3D graphics
• Designed to be implemented mostly on hardware 
• Many books and other documentation
• Competitors: DirectX (Microsoft), Metal (Apple), Vulkan (Khronos)

• OpenGL is highly optimized for triangles:

Individual 
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Fragments

FragmentsTransformed
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Primitives Framebuffer Display



GPUs and Gaming Consoles
• GPUs and Consoles are highly optimized for the graphics geometry pipeline
• They now support ray tracing, as does Blender



Rasterization

• Transform the vertices to screen space (with the matrix stack)
• Find all the pixels inside the 2D screen space triangle
• Color those pixels with the RGB-color of the triangle



Aside: Bounding Box Acceleration

• Checking every pixel against every triangle is computationally expensive
• Calculate a bounding box around the triangle, with diagonal corners:

min 𝑥! , 𝑥", 𝑥# , min 𝑦$, 𝑦", 𝑦#  and max 𝑥! , 𝑥", 𝑥# , max 𝑦$, 𝑦", 𝑦#
• Then, round coordinates upward to the nearest integer to find all relative pixels



Implicit Equation for a 2D line
• Compute a directed edge vector 𝑒 = 𝑝! − 𝑝" = 𝑥! − 𝑥", 𝑦! − 𝑦"
• Compute the 2D normal 𝑛 = 𝑦! − 𝑦", −(𝑥! − 𝑥") , which doesn’t need be unit length
• This 2D normal is “rightward” with respect to the 2D ray direction (“leftward” normal is −𝑛) 
• Points 𝑝 lying exactly on the 2D line have: 𝑝 − 𝑝" ⋅ 𝑛 = 0

• Same way planes are defined in 3D

𝒑𝟎 = (𝐱𝟎, 𝐲𝟎)

𝒑𝟏 = (𝒙𝟏, 𝒚𝟏)

𝒆

𝒏



(“Leftward”) Interior Side of a 2D Ray
• Points 𝑝 on the interior side of the 2D ray have: 𝑝 − 𝑝" ⋅ 𝑛 < 0
• Points 𝑝 exactly on the 2D line have: 𝑝 − 𝑝" ⋅ 𝑛 = 0
• Points 𝑝 on the exterior side of the 2D ray have: 𝑝 − 𝑝" ⋅ 𝑛 > 0
• This same concept can be used for planes in 3D

𝒑𝟎 = (𝐱𝟎, 𝐲𝟎)

𝒑𝟏 = (𝒙𝟏, 𝒚𝟏)

𝒆

𝒏

𝒑 − 𝒑𝟎 ⋅ 𝒏 < 𝟎
“interior” side

𝒑 − 𝒑𝟎 ⋅ 𝒏 > 𝟎
“exterior” side



2D Point Inside a 2D Triangle 

• A 2D point is considered inside a 2D triangle, when it is interior to (to the left of) all 3 rays
• Vertex ordering matters: backward facing triangles are not rendered, since no points are to 

the left of all three rays

v0 v1

v2

v0

v1

v2
Counter-Clockwise vertex ordering

(facing camera)
Clockwise vertex ordering
(facing away from camera)



Boundary Cases
• Pixels lying exactly on a triangle boundary with 𝑝 − 𝑝$ ⋅ 𝑛 = 0 for one of the 

edges won’t be rendered
• Causes gaps between adjacent (edge-sharing) triangles, when an edge overlaps a pixel

• Can fix by using 𝑝 − 𝑝$ ⋅ 𝑛 ≤ 0 instead of 𝑝 − 𝑝$ ⋅ 𝑛 < 0, but both triangles 
aim to color the same pixel
• Inefficient, and disagreements can cause artifacts

• Instead, render points on the shared edge (consistently) with one triangle or 
the other:
• Note: edge normals point in opposite directions for two adjacent triangles
• When 𝑛% > 0 or (𝑛% = 0 and 𝑛& > 0), rasterize pixels on that edge
• When 𝑛% < 0 or (𝑛% = 0 and 𝑛& < 0), do not rasterize pixels on that edge
• Note: 𝑛% and 𝑛& are only both zero for degenerate triangle



Overlapping Triangles
• When one object is in front of another, two triangles can aim to color the same pixel

• Recall: screen space projection computes 𝑧′ = 𝑛 + 𝑓 − '(
)

  for occlusion/transparency (via 
the alpha channel)

• Color each pixel using the triangle that has the smallest 𝑧* value (at that pixel)

• Need to interpolate 𝑧* values from triangle vertices to the pixel locations
• In order to do this, we use *proper* screen space barycentric weight interpolation



Linear Interpolation (for functions)
• Linearly interpolate between 𝑥!, 𝑦!  and 𝑥+, 𝑦+  via:

𝑦 𝑥 = &!,&"
%!,%"

(𝑥 − 𝑥!) + 𝑦!     or     𝑦 𝑥 = 1 − %,%"
%!,%"

𝑦! +
%,%"
%!,%"

𝑦+
• Alternatively, 𝑦 𝑡 = 1 − 𝑡 𝑦! + 𝑡𝑦+ where 𝑡 = %,%"

%!,%"
 ranges from 0 to 1 (and can be seen 

as the fraction of the way from 𝑥! to 𝑥+)

𝑦!

𝑦"

𝑥! 𝑥"

𝑦

𝑥
𝑡 = 0

𝑡 = 1

𝑡 = .5



2D/3D Line Segments
• Linearly interpolate between points 𝑝" and 𝑝! via 𝑝 𝑡 = 1 − 𝑡 𝑝" + 𝑡𝑝!
• 𝑡 = 3,3# !

3",3# !
 is the fraction of the distance from 𝑝" to 𝑝! 

• Barycentric weights reformulate this as 𝑝 = 𝛼"𝑝" + 𝛼!𝑝! with weights 𝛼", 𝛼! ∈ [0,1] having 
𝛼" + 𝛼! = 1, i.e. 𝛼" =

3,3" !
3",3# !

 and 𝛼! =
3,3# !
3",3# !

• Barycentric weights express any point 𝑝 on the segment as a linear combination of the 
endpoints of the segment

𝑝#

𝑝!

𝑝 𝛼#

𝛼!



2D/3D Triangles
• Express points on the triangle via 𝑝 = 𝛼"𝑝" + 𝛼!𝑝! + 𝛼+𝑝+ with barycentric weights 

𝛼", 𝛼!, 𝛼+ ∈ [0,1] having  𝛼" + 𝛼! + 𝛼+ = 1
• The weights are computed via areas:

𝛼" =
4567(3,3",3!)
4567(3#,3",3!)

    and   𝛼! =
4567(3#,3,3!)
4567(3#,3",3!)

    and   𝛼+ =
4567(3#,3",3)
4567(3#,3",3!)

 

• Note (for triangles):  𝐴𝑟𝑒𝑎 𝑝", 𝑝!, 𝑝+ = !
+ 𝑝"𝑝!	× 𝑝"𝑝+	 +

𝑝#
𝑝!

𝑝
𝛼"

𝛼!

𝑝"

𝛼#



(Alternative) Algebraic Approach

• Rewrite 𝛼"𝑝" + 𝛼!𝑝! + 𝛼+𝑝+ = 𝑝	as 𝛼"
𝑥"
𝑦"
𝑧"

+ 𝛼!
𝑥!
𝑦!
𝑧!

+ (1 − 𝛼" − 𝛼!)
𝑥+
𝑦+
𝑧+

=
𝑥
𝑦
𝑧

• Assemble into matrix form: 
𝑥" − 𝑥+ 𝑥! − 𝑥+
𝑦" − 𝑦+ 𝑦! − 𝑦+
𝑧" − 𝑧+ 𝑧! − 𝑧+

𝛼"
𝛼! =

𝑥 − 𝑥+
𝑦 − 𝑦+
𝑧 − 𝑧+

 

• In 2D, this is a 2x2 coefficient matrix; in 3D, use the normal equations to convert 𝐴
𝛼"
𝛼! = 𝑏 

into a 2x2 system 𝐴;𝐴
𝛼"
𝛼! = 𝐴;𝑏

• The coefficient matrix is rank 1 when the columns (i.e. edges) are colinear, implying infinite 
solutions for triangles with zero area (one can still embed 𝑝 on an appropriate edge)

• Invert the 2x2 coefficient matrix to solve the system of 2 equations with 2 unknowns (for 𝛼" 
and 𝛼!, and set 𝛼+ = 1 − 𝛼" − 𝛼!)



Triangle Basis Vectors
• Compute edge vectors 𝑢 = 𝑝" − 𝑝+ and 𝑣 = 𝑝! − 𝑝+
• Points in the triangle have the form 𝑝 = 𝑝+ + 𝛽!𝑢 + 𝛽+𝑣 with 𝛽!, 𝛽+ ∈ [0,1] and 𝛽! + 𝛽+ ≤ 1
• Substitutions and collecting terms gives 𝑝 = 𝛽!𝑝" + 𝛽+𝑝! + (1 − 𝛽! − 𝛽+)𝑝+ implying the 

equivalence: 𝛼" = 𝛽!,  𝛼! = 𝛽+ , 𝛼+ = 1 − 𝛽! − 𝛽+

𝑝#

𝑝$

𝑝"

𝑣 = 𝑝" − 𝑝#

𝑢 = 𝑝$ − 𝑝#

𝑝



Perspective Projection
• Projecting triangle vertices 𝑝", 𝑝!, 𝑝+ into screen space gives 𝑝"* , 𝑝!* , 𝑝+*  
• where 𝑥<* =

=%$
)$
	and	𝑦<* =

=&$
)$

  for each vertex’s 𝑥<, 𝑦<, 𝑧<  values (𝑖 = 0, 1, 2)

• Given a pixel at a location 𝑝*, we need to compute the 𝑧 value of the sub-triangle location 
that projects to it

• Then, the triangle with the smallest such 𝑧 value will be used to shade the pixel

• Compute 2D barycentric weights for 𝑝* = 𝛼"*𝑝"* + 𝛼!*𝑝!* + 𝛼+*𝑝+*
• Some point 𝑝 on the world space triangle projects to the pixel location 𝑝*
• But 𝑝 ≠ 𝛼"*𝑝" + 𝛼!*𝑝! + 𝛼+*𝑝+ because the perspective projection is highly nonlinear

• The barycentric weights for the interior of a screen space triangle do not correspondingly 
describe the interior of its corresponding world space triangle (and vice versa)!



Corresponding Barycentric Weights
• Given a pixel at 𝑝!, compute its 2D screen space barycentric weights: 𝛼"! , 𝛼#! , 𝛼$!  
• Also, compute its 2D triangle basis vectors: 𝑢! = 𝑝"! − 𝑝$!  and 𝑣! = 𝑝#! − 𝑝$!

• Then 𝑝! = 𝑝$! + 𝛼"!𝑢! + 𝛼#!𝑣! =
𝑥$!

𝑦$!
+ 𝑢#! 𝑣#!

𝑢$! 𝑣$!
𝛼"!

𝛼#!

• Some point 𝑝 = 𝑝$ + 𝛼" 𝑝" − 𝑝$ + 𝛼# 𝑝# − 𝑝$  projects to 𝑝! (barycentric weights for 𝑝 are unknown)
• The coordinates of 𝑝 obey: 𝑥 = 𝑥$ + 𝛼" 𝑥" − 𝑥$ + 𝛼# 𝑥# − 𝑥$ , 𝑦 = 𝑦$ + 𝛼" 𝑦" − 𝑦$ + 𝛼# 𝑦# − 𝑦$ , and 
𝑧 = 𝑧$ + 𝛼" 𝑧" − 𝑧$ + 𝛼# 𝑧# − 𝑧$

• Thus, 𝑝* =
=%
)
=&
)

=
ℎ %!>?# %#,%! >?" %",%!)!>?# )#,)! >?" )",)!

ℎ &!>?# &#,&! >?" &",&!)!>?# )#,)! >?" )",)!

=

)!%!%>?# )#%#%,)!%!% >?" )"%"%,)!%!%

)!>?# )#,)! >?" )",)!
)!&!%>?# )#&#%,)!&!% >?" )"&"%,)!&!%

)!>?# )#,)! >?" )",)!

• Or 𝑝′ = !
)!>?# )#,)! >?" )",)!

𝑧+𝑥+*

𝑧+𝑦+*
+

𝑧"𝑥"* − 𝑧+𝑥+* 𝑧!𝑥!* − 𝑧+𝑥+*

𝑧"𝑦"* − 𝑧+𝑦+* 𝑧!𝑦!* − 𝑧+𝑦+*
𝛼"
𝛼!



Corresponding Barycentric Weights
• These two definitions of 𝑝′ can be equated to obtain: 

1
𝑧$ + 𝛼" 𝑧" − 𝑧$ + 𝛼# 𝑧# − 𝑧$

𝑧$𝑥$!

𝑧$𝑦$!
+

𝑧"𝑥"! − 𝑧$𝑥$! 𝑧#𝑥#! − 𝑧$𝑥$!

𝑧"𝑦"! − 𝑧$𝑦$! 𝑧#𝑦#! − 𝑧$𝑦$!
𝛼"
𝛼# = 𝑥$!

𝑦$!
+ 𝑢#! 𝑣#!

𝑢$! 𝑣$!
𝛼"!

𝛼#!

• Bring 
𝑥$!

𝑦$!
 to the left-hand side, and under the brackets as −(𝑧$ + 𝛼" 𝑧" − 𝑧$ + 𝛼# 𝑧# − 𝑧$ )

𝑥$!

𝑦$!
 or 

equivalently 
−𝑧$𝑥$!

−𝑧$𝑦$!
+

−𝑧"𝑥$! + 𝑧$𝑥$! −𝑧#𝑥$! + 𝑧$𝑥$!

−𝑧"𝑦$! + 𝑧$𝑦$! −𝑧#𝑦$! + 𝑧$𝑦$!
𝛼"
𝛼#  leads to:

1
𝑧$ + 𝛼" 𝑧" − 𝑧$ + 𝛼# 𝑧# − 𝑧$

𝑧"𝑥"! − 𝑧"𝑥$! 𝑧#𝑥#! − 𝑧#𝑥$!

𝑧"𝑦"! − 𝑧"𝑦$! 𝑧#𝑦#! − 𝑧#𝑦$!
𝛼"
𝛼# =

𝑢#! 𝑣#!

𝑢$! 𝑣$!
𝛼"!

𝛼#!
1

𝑧$ + 𝛼" 𝑧" − 𝑧$ + 𝛼# 𝑧# − 𝑧$
𝑢#! 𝑣#!

𝑢$! 𝑣$!
𝑧"𝛼"
𝑧#𝛼# =

𝑢#! 𝑣#!

𝑢$! 𝑣$!
𝛼"!

𝛼#!
1

𝑧$ + 𝛼" 𝑧" − 𝑧$ + 𝛼# 𝑧# − 𝑧$
𝑧"𝛼"
𝑧#𝛼# =

𝛼"!

𝛼#!

• Note: all the terms related to 𝑥 and 𝑦 coordinates vanished, leaving dependence only on the 𝑧 coordinates



Corresponding Barycentric Weights
• Starting from 

𝑧"𝛼"
𝑧#𝛼# = 𝑧$ + 𝛼" 𝑧" − 𝑧$ + 𝛼# 𝑧# − 𝑧$

𝛼"!

𝛼#!
 

• Rewrite to 
𝑧" − 𝑧" − 𝑧$ 𝛼"! − 𝑧# − 𝑧$ 𝛼"!

− 𝑧" − 𝑧$ 𝛼#! 𝑧# − 𝑧# − 𝑧$ 𝛼#!
𝛼"
𝛼# =

𝑧$𝛼"!

𝑧$𝛼#!

• Invert the 2x2 matrix: 
𝛼"
𝛼# = #

%!%"&%" %!&%# '!$&%! %"&%# '"$
𝑧# − 𝑧# − 𝑧$ 𝛼#! 𝑧# − 𝑧$ 𝛼"!

𝑧" − 𝑧$ 𝛼#! 𝑧" − 𝑧" − 𝑧$ 𝛼"!
𝑧$𝛼"!

𝑧$𝛼#!

• Simplify: 
𝛼"
𝛼# = #

%"%#'!$(%!%#'"$(%!%"'#$
𝑧#𝑧$𝛼"!

𝑧"𝑧$𝛼#!

• In summary, given barycentric coordinates of the pixel, 𝛼"!  and 𝛼#! , we can compute: 

𝛼" =
)")!?#%

)")!?#%>)#)!?"%>)#)"?!%
      and    𝛼! =

)#)!?"%

)")!?#%>)#)!?"%>)#)"?!%
 

• Then 𝛼"	and 𝛼# (and 𝛼+ =
)#)"?!%

)")!?#%>)#)!?"%>)#)"?!%
) can be used to find the corresponding point 𝑝 on the world 

space triangle
• This also allows us to compute 𝑧 = 𝛼"𝑧" + 𝛼#𝑧# + 𝛼$𝑧$ at the point 𝑝



Depth Buffer
• Since 𝑧 = 𝛼"𝑧" + 𝛼#𝑧# + 𝛼$𝑧$ =

%!%"%#
%"%#'!$(%!%#'"$(%!%"'#$

 ,  we have #
%
= 𝛼"!

#
%!

+ 𝛼#!
#
%"

+ 𝛼$!
#
%#

• That is, #
%
 can be interpolated correctly with screen space barycentric weights (even though 𝑧 cannot be)

• Recall, for each vertex: 𝑧)! = 𝑛 + 𝑓 − *+
%%

 ,  or  #
%%
= +(*&%%

$

*+

• This leads to #
%
= +(*&('!$%!$('"$%"$('#$%#$)

*+
= +(*&%$

*+
 where 𝑧! is barycentrically interpolated

• That is, 𝑧! = 𝑛 + 𝑓 − *+
%

 for every point on the triangle (not just the vertices)

• Since .%
$

.%
= *+

%#
> 0, comparing interpolated 𝑧! values is as valid as comparing 𝑧 values



Ray Tracing
• Ray Tracing works very differently than the Scanline Rendering just discussed
• The ray tracer creates a ray going through a pixel, and subsequently intersects that ray with 
triangles in world space
• Since the ray tracer intrinsically operates in world space (not screen space), it never uses 
screen space barycentric coordinates
• Operating in world space is a huge advantage for the ray tracer when it comes to image 
quality, since it can thoroughly look around in world space to figure out what’s going on

• A scanline renderer operates in screen space, and as such has more limited information
• On the other hand, the limited capabilities of a scanline renderer make it a fantastic 
candidate for real time implementation on hardware

• Only recently have hardware implementations of some aspects of ray tracing become more 
feasible!



Lighting and Shading
• After identifying that a pixel is inside a triangle, its color can be set to the color of the triangle
• This ignores all the nuances of how light works (we’ll discuss that later)
• If you rendered a sphere using this simplistic approach, it would look like this:


