Triangles

Lots of Triangles

HE

Stanford Bunny

69,451 triangles

David (Digital Michelangelo Project)

56,230,343 triangles

Why Triangles?

Can focus on specializing/optimizing everything for (just) triangles
Optimize software and algorithms for just triangles
Optimize hardware (e.g. GPUs) for just triangles

Triangles have many inherent benefits:
Complex objects are well-approximated using enough triangles (piecewise linear
convergence)
Easy to break other polygons into triangles
Triangles are guaranteed to be planar (unlike quadrilaterals)
Transformations (from last lecture) only need be applied to triangle vertices
Robust barycentric interpolation can be used to interpolate information stored on vertices to
the interior (of the triangle)
Etc.

OpenGL

Blender uses OpenGL for real-time scanline renderering

OpenGL was started by SGI in 1991 (went into the public domain in 2006)
It's a drawing APl for 2D/3D graphics

Designed to be implemented mostly on hardware

Many books and other documentation

Competitors: DirectX (Microsoft), Metal (Apple), Vulkan (Khronos)

OpenGL is highly optimized for triangles:

g N BACK FRONT
@reninnns® @renneeeeesnns ﬂd BUFFER ‘ BUFFER
. ? ol S] \ ﬁ - &33:: < BT,
E TR . - "“ '~.~.,... '~....,,.\, ‘ - ‘] BACK +
¢ g @ = A H 1 o BUFFER

............. s L -
.. -,
Individual Transformed 3 - ety Fragments Shaded !
Primitives Framebuffer Display

GPUs and Gaming Consoles

 GPUs and Consoles are highly optimized for the graphics geometry pipeline
* They now support ray tracing, as does Blender

Q
m
AL
Q
2
N
m
2
-~
x

Rasterization

* Transform the vertices to screen space (with the matrix stack)
* Find all the pixels inside the 2D screen space triangle
 Color those pixels with the RGB-color of the triangle

,,
///
A e & & & & o 0 0

\\
. ® & & & & & o o 0 0
.
T
.
e
~8 ® & & & o 0 0 0
~
™
y
~.9® & & & & & o o
.
T
.
/
>
- ® ® ® ® & & & & o 0
b
>
9 ® © & & & & o o o o o

o~
-

IN
-~
Y

Aside: Bounding Box Acceleration

* Checking every pixel against every triangle is computationally expensive
 Calculate a bounding box around the triangle, with diagonal corners:

(min(x,, x1, x3) , min(ye, y1, y2)) and (max(x,, X1, x3) , max(yo, 1, y2))
* Then, round coordinates upward to the nearest integer to find all relative pixels

l/ﬂ >\.l
L/

Implicit Equation for a 2D line

Compute a directed edge vectore = p; — pg = (x1 — X9, V1 — Vo)
Compute the 2D normaln = (y; — yo, —(x1 — xp)), which doesn’t need be unit length
This 2D normal is “rightward” with respect to the 2D ray direction (“leftward” normal is —n)

Points p lying exactly on the 2D line have: (p —py) -n =0
 Same way planes are defined in 3D

Po = (X0,Yo)

o
P1 = (x1,¥Y1)

(“Leftward”) Interior Side of a 2D Ray

Points p on the interior side of the 2D ray have: (p —py) - n < 0
Points p exactly on the 2D line have: (p —pg) - n =0

Points p on the exterior side of the 2D ray have: (p — pg) - n > 0
This same concept can be used for planes in 3D

Po = (X0,Y0)
n
(p—po) n>0
“exterior” side
g (p—po) n<O
i “interior” side

P1 = (x1,¥Y1)

2D Point Inside a 2D Triangle

v2 vl
vO vl vO v2
Counter-Clockwise vertex ordering Clockwise vertex ordering
(facing camera) (facing away from camera)

« A 2D pointis considered inside a 2D triangle, when it is interior to (to the left of) all 3 rays
 \Vertex ordering matters: backward facing triangles are not rendered, since no points are to
the left of all three rays

Boundary Cases

Pixels lying exactly on a triangle boundary with (p — p,) - n = 0 for one of the
edges won’t be rendered

e (Causes gaps between adjacent (edge-sharing) triangles, when an edge overlaps a pixel
Can fix by using (p — py) : n < 0 instead of (p — py) - n < 0, but both triangles
aim to color the same pixel

* Inefficient, and disagreements can cause artifacts

Instead, render points on the shared edge (consistently) with one triangle or
the other:

* Note: edge normals point in opposite directions for two adjacent triangles

* Whenny, > 0or(n, = 0andn, > 0), rasterize pixels on that edge

* Whenn, <0or(n, =0andn, <0),do not rasterize pixels on that edge

* Note: n, and n,, are only both zero for degenerate triangle

Overlapping Triangles

When one object is in front of another, two triangles can aim to color the same pixel

: : n 5 3
Recall: screen space projection computesz' =n + f — f; for occlusion/transparency (via

the alpha channel)
y : N 7 ‘ ' -“":-‘f {l:l- ‘

Color each pixel using the triangle that has the smallest z’ value (at that pixel)

Need to interpolate z’ values from triangle vertices to the pixel locations
In order to do this, we use *proper™* screen space barycentric weight interpolation

Linear Interpolation (for functions)

e Linearly interpolate between (x4, y1) and (x5, y,) via:
y(0) = () (x—x) +y; or y@) =(1-22)y + (22,

X2—Xq X2—Xq X2—Xq
X—=X4

e Alternatively, y(t) = (1 — t)y; + ty, where t = ranges from 0 to 1 (and can be seen

X2—X1
as the fraction of the way from x4 to x5)

Yy
Y2 1 ®

V1 o

2D/3D Line Segments

Linearly interpolate between points py and p; viap(t) = (1 — t)py + tpy

i lp—Doll2

lp1—Doll2

Barycentric weights reformulate this as p = agpy + a1p; with weights ay, a; € [0,1] having
T lp—p1ll2 =h lp—Doll2

G Prar ==l = and a4 =
S ' O Sl =polls L% pia ol

Barycentric weights express any point p on the segment as a linear combination of the
endpoints of the segment

is the fraction of the distance from py to p;

P1

Po a1

2D/3D Triangles

* Express points on the triangle via p = agpo + a1p1 + a,p, with barycentric weights
g, A1, %> € [0,1] having ag + a1 +a, =1

* The weights are computed via areas:
__ Area(p,p1,p2)
Qo

~ Area(po,p1.p2) :
* Note (for triangles): Area(po,p1,p2) = 3 |l PoP1 X Pop2 Il

P2

and e Area(po,p,pz) and o> = Area(p0;p1)p)
1™ area(py,pi,p2) 27 Area(po,pipz)

P1
Po

(Alternative) Algebraic Approach

X0 X1 X9 X
Rewrite agpg + a1p1 + ap, = p as g <}’0> + a4 (3’1) = (1= o t0q) ()’2) = (y)

Zo Zq Zy Z

XO—xZ X1 — Xy CZ Ki=Xo
Assemble into matrix form: <)’o pam bl e i)’2> (ao) = (y R)’2>
ZO—Z2 Zl_ZZ 1 Z—Zz

a

In 2D, this is a 2x2 coefficient matrix; in 3D, use the normal equations to convert A (a(l)) =b
a

into a 2x2 system AT A (a(l)) = ATh
The coefficient matrix is rank 1 when the columns (i.e. edges) are colinear, implying infinite
solutions for triangles with zero area (one can still embed p on an appropriate edge)
Invert the 2x2 coefficient matrix to solve the system of 2 equations with 2 unknowns (for a,
and ¢, andseta, =1 —ayg— aq)

Triangle Basis Vectors

Compute edge vectors u = pg — pp and v = p; — p,
Points in the triangle have the formp = p, + fiu + v with 54,5, € [0,1]and f; + [, = 1

Substitutions and collecting terms gives p = 1po + fop1 + (1 — f1 — [>)p, implying the
equivalence: ag = B, a1 = f,a, =1— 01 — B

P1

Vs e 2
Po

P2

Perspective Projection

Projecting triangle vertices py, p1, p, into screen space gives py, P1, P2

/ hx; / hy;

* wherex; =— andy; = —

Zj Zj

Given a pixel at a location p’, we need to compute the z value of the sub-triangle location
that projects to it

Then, the triangle with the smallest such z value will be used to shade the pixel

for each vertex’s (x;, y;, z;) values (i = 0,1, 2)

Compute 2D barycentric weights for p’ = a(p| + aip1 + a,p;
Some point p on the world space triangle projects to the pixel location p’
Butp # a\py + a1p1 + a,p, because the perspective projection is highly nonlinear

The barycentric weights for the interior of a screen space triangle do not correspondingly
describe the interior of its corresponding world space triangle (and vice versa)!

Corresponding Barycentric Weights

Given a pixel at p’, compute its 2D screen space barycentric weights: ag, aq, a5
Also, compute its 2D triangle basis vectors: u’ = p; — p3 and v’ = p; — p5

!/ I/ I/ !/

X u v (04
Thenp’=p§+a{)u’+a1v’=(%)+(,1 })(‘,’)
e Uzv=V2l \Oq

* Some pointp = p, + ag(py — p2) + a1(p; — py) projects to p’ (barycentric weights for p are unknown)
The coordinates of p obey: x = x, + ag(xg — x3) + a1 (x1 —x5), vy =y, + ag(yg — y2) + a1(y; — y,), and
z =273+ ag(zg — 73) + a1(z1 — 73)

hx Xz t+ag(Xg—x2)+aq (xq1—x3) szé+a0(Zox6—22x£)+a1(le{—zzxé)
ol g p/ iy R0 Zytag(Zo—2z3)+a,(z1-23) | Zytag(Zg—2z2)+aq(z1—2;)
' hy n Y2 +ao(Vo—y2)+a,(¥1—-Y>) Zo V5 +ao(2oVi—22y3)+ a1 (21Y1-22Y3)
Z ZZ+aO(ZO_Z2)+a1(Zl_ZZ) Zz‘l‘ao(ZO—Zz)"'al(Zl—Zz)
!/ !/ P !/ / st !/ a
el 1 (szz) + (Zoxo ZXy Z1X1 szz)(0)]
Zy+ao(Zo—2Z2)+a1(z1-22) |\z, Y, ZoYo — Z2Y2 Z1Y1 — ZY5) \@1

Corresponding Barycentric Weights

These two definitions of p’ can be equated to obtain:

1 (szé) 4 (Zox6 — ZyX; Z1Xp — szé) (“0)] A (xé) e (Ui Vi) (“6)

Zy + aogzo — 73) + a;(z — z) \z,y; Z0Y0 — Z2Y2 Z1Y1 — Z2Y3/ \% V2 u; 7,75 aj
X X

 Bring (y%) to the left-hand side, and under the brackets as —(z, + a¢(zy — z,) + a1(z; — 2,)) (2) or

/
2

)
—ZyX —Z0nX> + ZoX —Z1X> + ZoX a
equivalently(2 2)+(S A Lo 2)(0

/ 4 I/ / /
—Z2Y> —ZoY2 t 22y, —Z1Yp + Z3y,/ *

1 (zox(’) — ZoXy Z1Xq — leé) (ao)) (ui v{) (a6>
/ ! / /4 M= !/ ! !/
Zy + ag(2g — 22) + a1(21 — 22) \2pYo — Z20Y2 Z1Y1 — Z1Y2/ \1 Uy Vs

1 (Ui Ui) (Zoao) (o (Ui Ul) (a())
Zy + ag(zg — 23) + a1(zy — z5) \up; v,/ \Z101 U, v/ \aq
1 (zoao) el (a(’))
Zy + ag(zg — 22) + a1(z1 — z3) \21%1 ay

)Ieadsto:

Note: all the terms related to x and y coordinates vanished, leaving dependence only on the z coordinates

Corresponding Barycentric Weights

: Zo&o Qg
Starting from (21051) = (23 + ao(z0 — 72) + a1(z; — 23)) (ai)

Zo Lo oot~ AT s) (“0) = (Zza(’))
—(20 — 22)4 21 — (21 — z5) a1/ \% 2304
“0) 1 <Z1 — (21 — z3)aq (z1 — z2)ay) (22“(’))

a1 (2o — z2)a; zg — (20 — 22) /) \za1

Rewrite to (

Z021~21(20~22) Qg —20(Z1~22) 1

Invert the 2x2 matrix: (

/

e —iaatib LGN 5 1 Z1Z2%
Simplify: { , | = ; . ; :
1 Z122Q0FZ0Z201 1202105 \ZZy X1

In summary, given barycentric coordinates of the pixel, ay and a7, we can compute:

/4
2175, ZoZ 0

Ay = and @1.=

Z1Zo N +Z0Zo ! +2z024 ! Z1Zo 0 +ZnZo) +202Z4 !
1Z2Q0+ZgZ A1 +ZgZ1 @, 1Z2Q0+ZgZo A1 +ZgZ1 A,

4
ZoZ1 0(2

Then ag and a4 (and & = ~) can be used to find the corresponding point p on the world

Z1Z> 0(6 +Zozz 0(1 +Zozla2
space triangle
This also allows us to compute z = ayzg + a1z + a2, at the point p

Depth Butfer

. ZoZ1Z 1 1
Since z = agzg + @121 + az; = 2 ,,Wehave—=a0()+a1()+a()
leza0+2022a1+ZOZ1a2 Ay Zy

i) .
That is, —can be interpolated correctly with screen space barycentric weights (even though z cannot be)

1 +f-z;
Recall, for each vertex: Z-’ =7 R — ﬁ’ S e
Zj Zj fn
=
This leads to S (%Z";nalzlmzZZ) n+]{nz where z' is barycentrically interpolated

Thatis,z' =n+ f — %n for every point on the triangle (not just the vertices)

dz' n
Since il];2 > 0, comparing interpolated z’ values is as valid as comparing z values

Ray Tracing

e Ray Tracing works very differently than the Scanline Rendering just discussed

 The ray tracer creates a ray going through a pixel, and subsequently intersects that ray with
triangles in world space

* Since the ray tracer intrinsically operates in world space (not screen space), it never uses
screen space barycentric coordinates

 Operating in world space is a huge advantage for the ray tracer when it comes to image
qguality, since it can thoroughly look around in world space to figure out what’s going on

 Ascanline renderer operates in screen space, and as such has more limited information
* On the other hand, the limited capabilities of a scanline renderer make it a fantastic
candidate for real time implementation on hardware

* Only recently have hardware implementations of some aspects of ray tracing become more
feasible!

Lighting and Shading

 After identifying that a pixel is inside a triangle, its color can be set to the color of the triangle
 This ignores all the nuances of how light works (we’ll discuss that later)
* |If you rendered a sphere using this simplistic approach, it would look like this:

