Global Illumination

Photon Tracing

- For each light, choose a number of outgoing directions (on the hemisphere or sphere); emit a photon in each direction
- Each photon travels in a straight line, until it intersects an object
- If Absorbed: terminate photon (it doesn't get to the film)
- If Reflected/Transmitted/Scattered: photon goes off in a new direction (until it again intersects an object)

• If a photon goes through the camera aperture and hits the film, it contributes to the final image

Photon Tracing

Most of the light never hits the film (far too inefficient, impractical)

(Backward) Path Tracing

- For each pixel, send a ray through the aperture to <u>backward</u> trace a photon that would hit the pixel (same as ray tracing)
- If the ray hits an object, cast rays in all directions of the hemisphere in order to backwards trace incoming photons
 - Every new ray that hits another surface spawns an entire hemisphere of rays of its own (exponential growth, impractical)
- Follow all rays until they hit a light source (and terminate)
- A terminated ray (only) gives a path from the light source to the pixel
 - Emit photons along this path, bounce them off all the objects along the path, check to see if absorbed (otherwise, continue on towards the pixel)
 - Some percentage of the photons are absorbed resulting in a specific color/brightness of light hitting the pixel (along that path)

(Backward) Path Tracing

Most paths take too long to find their way back to the light source (inefficient)

Ray Tracing (a more efficient Path Tracing)

 Ignore most incoming directions on the hemisphere, only keeping the most important ones:

- Rays incoming directly from the light source have a lot of photons
 - A Shadow Ray is used to account for this incoming light
 - Called <u>direct illumination</u> (since light is coming <u>directly</u> from a light source)
- Reflective objects bounce a lot of photons in the mirror reflection direction
 - This incoming light is accounted for with a Reflected Ray
- Transparent objects transmit a lot of photons along the transmitted ray direction
 - This incoming light is accounted for with a Transmitted Ray
- Downside: ignoring a lot of the light, and its visual effects

Bidirectional Ray Tracing

- Combine Photon Tracing and Ray Tracing
- Step 1: Emit photons from the light, bathe objects in those photons, and record the result in a <u>light map</u>
 - Photons bounce around illuminating shadowed regions, bleeding color, etc.
 - Note: light maps don't change when the camera moves (so they can be precomputed)
- Step 2: Ray trace the scene, using the light map to estimate indirect light (from the ignored directions of the hemisphere)
- <u>IMPORTANT</u>: Still treat the most important directions (on the hemisphere) explicitly, for increased accuracy
 - Shadow Rays for direct illumination
 - Reflected Rays
 - Transmitted Rays

Light Maps

- Light maps work great for soft shadows, color bleeding, etc.
- They can also generate many other interesting effects:

Recall: Lighting Equation

- Multiplying the BRDF by an incoming irradiance gives the outgoing radiance $dL_{o\ due\ to\ i}(\omega_i,\omega_o)=BRDF(\omega_i,\omega_o)dE_i(\omega_i)$
- For even more realistic lighting, we'll bounce light all around the scene
- It's tedious to convert between E and L, so use $dE = Ld\omega \cos \theta$ to obtain: $dL_{o,due,to,i}(\omega_i,\omega_o) = BRDF(\omega_i,\omega_o)L_id\omega_i \cos \theta_i$
- Then,

$$L_o(\omega_o) = \int_{i \in in} BRDF(\omega_i, \omega_o) L_i \cos \theta_i \, d\omega_i$$

Lighting Equation

- ullet Explicitly add the dependencies on the surface location x and incoming angle ω_i
- Change $i \in in$ for "incoming directions" to $i \in hemi$ for "hemisphere"
- Add an emission term L_e , so x can be a location on the surface of actual lights too

$$L_o(\mathbf{x}, \omega_o) = L_e(\mathbf{x}, \omega_o) + \int_{i \in hemi} BRDF(\mathbf{x}, \omega_i, \omega_o) L_i(\mathbf{x}, \omega_i) \cos \theta_i \, d\omega_i$$

- Incoming light from direction ω_i left some other surface point x' going in direction $-\omega_i$
- So, replace $L_i(x, \omega_i)$ with $L_o(x', -\omega_i)$

$$L_o(x, \omega_o) = L_e(x, \omega_o) + \int_{i \in hemi} BRDF(x, \omega_i, \omega_o) L_o(x', -\omega_i) \cos \theta_i \, d\omega_i$$

An Implicit Equation

- Computing the outgoing radiance $L_o(x, \omega_o)$ on a particular surface requires knowing the outgoing radiance $L_o(x', -\omega_i)$ from all the other (relevant) surfaces
- But the outgoing radiance from those other surfaces (typically) depends on the outgoing radiance from the surface under consideration (circular dependencies)

$$L_{o}(x, \omega_{o}) = L_{e}(x, \omega_{o}) + \int_{i \in hemi} L_{o}(x', -\omega_{i}) \frac{BRDF(x, \omega_{i}, \omega_{o}) \cos \theta_{i} d\omega_{i}}{Reflected Light Emission}$$

$$\frac{Reflected Light}{UNKNOWN} \frac{Emission}{KNOWN} \frac{Reflected Light}{UNKNOWN} \frac{BRDF}{KNOWN} \frac{incident angle}{KNOWN}$$

• Fredholm Integral Equation of the second kind (extensively studied) given in canonical form with kernel k(u, v) by:

$$l(u) = e(u) + \int l(v) k(u, v) dv$$

Aside: Participating Media

- "Air" typically contains participating media (e.g. dust, droplets, smoke, etc.)
- L should be defined over all of 3D space
- The incoming light should be considered in a sphere centered around each point in 3D space
- Neglecting this assumes that "air" is a vacuum
- This restricts L to surfaces

Discretization (of the integral equation)

- Choose p points, each representing a chunk of surface area (or chunk of volume for participating media), which is a 2D (or 3D) discretization
- ullet For each of the p points: Choose q outgoing directions, each representing a chunk of solid angles of the hemisphere (or sphere), which is a 2D discretization
 - \bullet q can vary from surface chunk to surface chunk
- L_o and L_e then each have p*q unknowns, a 4D (or 5D) discretization
 - They can thus be represented by vectors: L and E, each with length p*q
- The light transport "kernel" matrix K has size p*q by p*q
- The linear system of equations is: L = E + KL or (I K)L = E
- Solution: $L = (I K)^{-1}E = (I + K + K^2 + \cdots)E$
- Since K bounces only a fraction of the light (the rest is absorbed), higher powers are smaller (and the series can be truncated)

Power Series

Power Series

Tractability

- A (typical) scene might warrant thousands or tens of thousands of area chunks
 - So, p could be 1e3, 1e4, 1e5, 1e6, etc.
- Incoming light could vary significantly across the hemisphere
 - So, q might need to be 1e2, 1e3, 1e4, etc.
- L and E would then range in length from 1e5 to 1e10
- The matrix K would then range in size from 1e5 by 1e5 up to 1e10 by 1e10
- K would have between 1e10 and 1e20 entries!
- This tractability analysis is for the 4D problem (5D is even worse)
- The <u>curse of dimensionality</u> makes problems in 4D and 5D (and higher) hard to discretize (with numerical quadrature)

Addressing Tractability

Idea: separate the diffuse and specular contributions (to be treated separately)

Diffuse:

- Assume all materials are purely <u>diffuse</u> (i.e. no specular contributions)
- Compute the view-independent global illumination for the entire scene
- This can be done in a pre-processing step

Specular:

- Compute (view-dependent) specular illumination on-the-fly as the camera moves
 - Use Phong Shading (or any other model)

Radiosity and Albedo

• Radiosity: power per unit surface area leaving a surface (similar to irradiance, but outgoing instead of incoming):

$$B(x) = \frac{d\Phi}{dA} = \int_{hemi} L_o(x, \omega_o) \cos \theta_o d\omega_o$$

• When L_o is independent of ω_o (i.e. purely diffuse):

$$B(x) = \frac{d\Phi}{dA} = L(x) \int_{hemi} \cos \theta_o \, d\omega_o = \pi L(x)$$

• Albedo: a "reflection coefficient" relating incoming light hitting a surface patch (irradiance E_i) to outgoing light emitted in all possible directions

$$\rho(x) = \int_{hemi} BRDF(x, \omega_o, \omega_i) \cos \theta_o d\omega_o$$

• When the BRDF is independent of ω_o and ω_i (i.e. purely diffuse):

$$\rho(x) = BRDF(x) \int_{hemi} \cos \theta_o \, d\omega_o = \pi \, BRDF(x)$$

(Purely Diffuse) Lighting Equation

• Given $L_o(x, \omega_o) = L_e(x, \omega_o) + \int_{i \in hemi} L_o(x', -\omega_i) BRDF(x, \omega_i, \omega_o) \cos \theta_i d\omega_i$, multiply through by $\cos \theta_o d\omega_o$ and integrate over the hemisphere (i.e. $d\omega_o$) to obtain:

$$B(x) = E(x) + \int_{i \in hemi} B(x')BRDF(x, \omega_i, \omega_o) \cos \theta_i d\omega_i$$

• B is a 2D function (of x), whereas L was a 4D function (of x and ω_o)

• Then, assume that all surfaces have a diffuse BRDF independent of angle:

$$B(x) = E(x) + \frac{\rho(x)}{\pi} \int_{i \in hemi} B(x') \cos \theta_i \, d\omega_i$$

Recall: Solid Angle vs. Cross-Sectional Area

• The (orthogonal) cross-sectional area is $dA \cos\theta$

• So, $d\omega = \frac{dA_{sphere}}{r^2} = \frac{dA \cos \theta}{r^2}$ (solid angle varies with tilting θ and distance r)

Interchange Solid Angle and Surface Area

• Note:
$$d\omega = \frac{dA \cos\theta}{r^2}$$
 gives $d\omega_i = \frac{dA' \cos\theta_o}{\|x - x'\|_2^2}$

• So,
$$B(x) = E(x) + \frac{\rho(x)}{\pi} \int_{i \in hemi} B(x') \cos \theta_i \, d\omega_i$$
 is:

$$B(x) = E(x) + \rho(x) \int_{i \in hemi} B(x') \frac{\cos \theta_i \cos \theta_o}{\pi \|x - x'\|_2^2} dA'$$

• Let V(x, x') = 1 when x and x' are mutually visible (and V(x, x') = 0 otherwise), then:

$$B(x) = E(x) + \rho(x) \int_{all \ x'} B(x') V(x, x') \frac{\cos \theta_i \cos \theta_o}{\pi \|x - x'\|_2^2} dA'$$

A Tractable Discretization

- ullet Choose p points, each representing a chunk of surface area (a 2D discretization)
- Then $B_i = E_i + \rho_i \sum_{j \neq i} B_j F_{ij}$ with a purely geometric $F_{ij} = V(x_i, x_j) \frac{\cos \theta_i \cos \theta_j}{\pi \|x_i x_j\|_2^2} A_j$
- Rearrange to $B_i \rho_i \sum_{j \neq i} B_j F_{ij} = E_i$ and put into matrix form:

$$\begin{pmatrix} 1 & -\rho_{1}F_{12} & \cdots & -\rho_{1}F_{1p} \\ -\rho_{2}F_{21} & 1 & \cdots & -\rho_{2}F_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ -\rho_{p}F_{p1} & -\rho_{p}F_{p2} & \cdots & 1 \end{pmatrix} \begin{pmatrix} B_{1} \\ B_{2} \\ \vdots \\ B_{p} \end{pmatrix} = \begin{pmatrix} E_{1} \\ E_{2} \\ \vdots \\ E_{p} \end{pmatrix}$$

• For p ranging from 1e3 to 1e6: B and E have the same size, and the matrix has 1e6 to 1e12 entries (still large, but 1e4 to 1e8 times smaller than previously)

Form Factor

• Write $F_{ij} = V(x_i, x_j) \frac{F_{ij}}{A_i}$ and $F_{ji} = V(x_i, x_j) \frac{F_{ij}}{A_j}$ with (symmetric) form factor:

$$\widehat{F}_{ij} = \frac{\cos \theta_i \cos \theta_j}{\pi \|x_i - x_j\|_2^2} A_i A_j$$

• \hat{F}_{ij} represents how the light energy leaving one surface impacts the other surface, and vice versa (and only depends on the geometry, not on the light)

• The visibility between between x_i and x_j , i.e. $V(x_i, x_j)$, also only depends on the geometry (and can be included into \hat{F}_{ij} if desired)

Understanding the Form Factor

- Place a unit hemisphere at a surface point x_i
- •Project the other surface onto the hemisphere, noting that $d\omega = \frac{dA\cos\theta}{r^2}$ gives $\frac{A_j\cos\theta_j}{\left\|x_i-x_j\right\|_2^2}$ as the result
- ullet Project the result downwards onto the circular base of the hemisphere, which multiples by $\cos heta_i$
 - Recall $\int_{i\in hemi}\cos\theta_i\,d\omega_i=\pi$, the area of the unit circle
- \bullet Divide the result by the total area π to get the fraction of the circle occupied
- Overall, this gives: $F_{ij} = \frac{\cos \theta_i \cos \theta_j}{\pi \|x_i x_j\|_2^2} A_j$

Implementation

- Create a hemicube, and divide each face into subsquares (as small as desired)
- ullet For each sub-square, use hemisphere projection (from the last slide) to pre-compute its contribution to F_{ij}
- Place the hemicube at a surface point x_i
- A surface patch (from another object) is projected onto the hemicube in order to approximate F_{ij} (using the precomputed values for the sub-squares)
- The five hemicube faces can be treated as image planes and the sub-squares as pixels, making this equivalent to scanline rasterization
- The <u>depth buffer</u> can be used to detect occlusions, which are used the visibility term

Hemicube Scanline Rasterization

Iterative Solvers

- For large matrices, iterative solvers are typically far more accurate than direct methods (that compute an inverse)
- Iterative methods start with an initial guess, and subsequently iteratively improve it
- Consider $\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 8 \\ 10 \end{pmatrix}$ with exact solution $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 2 \\ 4 \end{pmatrix}$
- Start with an initial guess of $\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}$
- Jacobi iteration (solve both equations using the current guess):

•
$$x^{new} = \frac{8 - y^{old}}{2}$$
 and $y^{new} = \frac{10 - x^{old}}{2}$

• Gauss Seidal iteration (always use the most up to date values):

•
$$x^{current} = \frac{8 - y^{current}}{2}$$
 and $y^{current} = \frac{10 - x^{current}}{2}$

Jacobi vs. Gauss-Seidal

Iteration	Jacobi		Gauss Seidel		
	x	y	x	у	
1	0	0	0	0	
2	4	5	4	3	
3	1.5	3	2.5	3.75	
4	2.5	4.25	2.125	3.9375	
5	1.875	3.75	2.03125	3.984375	
6	2.125	4.0625	2.007813	3.996094	
7	1.96875	3.9375	2.001953	3.999023	
8	2.03125	4.015625	2.000488	3.999756	
9	1.9921875	3.984375	2.000122	3.999939	
10	2.0078125	4.00390625	2.000031	3.999985	
11	1.998046875	3.99609375	2.000008	3.999996	
12	2.001953125	4.000976563	2.000002	3.999999	
13	1.999511719	3.999023438	2	4	
14	2.000488281	4.000244141	2	4	
15	1.99987793	3.999755859	2	4	
16	2.00012207	4.000061035	2	4	
17	1.999969482	3.999938965	2	4	
18	2.000030518	4.000015259	2	4	
19	1.999992371	3.999984741	2	4	
20	2.000007629	4.000003815	2	4	

Better Initial Guess

Iteration	Jacobi		Gauss Seidal	
	x	у	x	у
1	2	3	2	3
2	2.5	4	2.5	3.75
3	2	3.75	2.125	3.9375
4	2.125	4	2.03125	3.984375
5	2	3.9375	2.007813	3.996094
6	2.03125	4	2.001953	3.999023
7	2	3.984375	2.000488	3.999756
8	2.0078125	4	2.000122	3.999939
9	2	3.99609375	2.000031	3.999985
10	2.001953125	4	2.000008	3.999996
11	2	3.999023438	2.000002	3.999999
12	2.000488281	4	2	4
13	2	3.999755859	2	4
14	2.00012207	4	2	4
15	2	3.999938965	2	4
16	2.000030518	4	2	4
17	2	3.999984741	2	
18	2.000007629	4	2	4
19	2	3.999996185	2	4
20	2.000001907	4	2	

Iterative Radiosity

- Gathering update one surface by collecting light energy from all surfaces
- Shooting update all surfaces by distributing light energy from one surface
- Sorting and Shooting choose the surface with the greatest un-shot light energy and use shooting to distribute it to other surfaces
 - start by shooting light energy out of the lights onto objects (the brightest light goes first)
 - then the object that would reflect the most light goes next, etc.
- <u>Sorting and Shooting with Ambient</u> start with an initial guess for ambient lighting and do sorting and shooting afterwards

Iterative Radiosity

