Global lllumination

vrchstuffs

CTION CAPTURES NEED TO BE REBUILT (1 unbuilt)

Illll ~
#
T

””"1&

Photon Tracing

* For each light, choose a number of outgoing directions (on the hemisphere or
sphere); emit a photon in each direction

* Each photon travels in a straight line, until it intersects an object
* If Absorbed: terminate photon (it doesn’t get to the film)

* |f Reflected/Transmitted/Scattered: photon goes off in a new direction (until it
again intersects an object)

* If a photon goes through the camera aperture and hits the film, it contributes to
the final image

Photon Tracing

* Most of the light never hits the film (far too inefficient, impractical)

// g

/
// g
. /
AN /
. /
N y
f— \\//

(Backward) Path Tracing

* For each pixel, send a ray through the aperture to backward trace a photon that
would hit the pixel (same as ray tracing)

* If the ray hits an object, cast rays in all directions of the hemisphere in order to
backwards trace incoming photons

* Every new ray that hits another surface spawns an entire hemisphere of rays of its own
(exponential growth, impractical)

* Follow all rays until they hit a light source (and terminate)

* A terminated ray (only) gives a path from the light source to the pixel

* Emit photons along this path, bounce them off all the objects along the path, check to see
if absorbed (otherwise, continue on towards the pixel)

* Some percentage of the photons are absorbed resulting in a specific color/brightness of
light hitting the pixel (along that path)

(Backward) Path Tracing

 Most paths take too long to find their way back to the light source (inefficient)

Ray Tracing (a more efficient Path Tracing)

* lgnore most incoming directions on the hemisphere, only keeping the most
Important ones:

* Rays incoming directly from the light source have a lot of photons

* A Shadow Ray is used to account for this incoming light
 Called direct illumination (since light is coming directly from a light source)

 Reflective objects bounce a lot of photons in the mirror reflection direction
* This incoming light is accounted for with a Reflected Ray

* Transparent objects transmit a lot of photons along the transmitted ray direction
* This incoming light is accounted for with a Transmitted Ray

* Downside: ignoring a lot of the light, and its visual effects

Bidirectional Ray Tracing

 Combine Photon Tracing and Ray Tracing

 Step 1: Emit photons from the light, bathe objects in those photons, and record
the result in a light map
* Photons bounce around illuminating shadowed regions, bleeding color, etc.
* Note: light maps don’t change when the camera moves (so they can be precomputed)

 Step 2: Ray trace the scene, using the light map to estimate indirect light (from
the ignored directions of the hemisphere)

* IMPORTANT: Still treat the most important directions (on the hemisphere)
explicitly, for increased accuracy
* Shadow Rays for direct illumination
» Reflected Rays
* Transmitted Rays

Light Maps

* Light maps work great for soft shadows, color bleeding, etc.

* They can also generate many other interesting effects:

Recall: Lighting Equation

* Multiplying the BRDF by an incoming irradiance gives the outgoing radiance
dLo due to i(wir wo) T BRDF(CUD wo)dEi (wi)

* For even more realistic lighting, we’ll bounce light all around the scene

* |It’s tedious to convert between E and L, so use dE = Ldw cos 6 to obtain:
dLy que to i (Wi, W) = BRDF (w;, wo)L;dw; cos 6);

* Then,

Y J BRDF (w;, w,)L; cos 8; dw;

LEIN

Lighting Equation

* Explicitly add the dependencies on the surface location x and incoming angle w;
* Change i € in for “incoming directions” to i € hemi for “hemisphere”
* Add an emission term L, so x can be a location on the surface of actual lights too

L,(x,w,) = L.(x, w,) + j BRDF (x, w;, w,)L;(x, w;) cos 8; dw;

IEhemi
* Incoming light from direction w; left some other surface point x’ going in direction —w;

* So, replace L;(x, w;) with L, (x', —w;)

L,(x,w,) = Lo(x,w,) + j BRDF (x, w;, w,)L,(x", —w;) cos 6; dw;

lEhemi

An Implicit Equation

« Computing the outgoing radiance L, (x, w,) on a particular surface requires knowing the
outgoing radiance L, (x’, —w;) from all the other (relevant) surfaces

* But the outgoing radiance from those other surfaces (typically) depends on the outgoing
radiance from the surface under consideration (circular dependencies)

L,(x,w,) = Lo(x,w,) + J L,(x'",—w;)|IBRDF (x, w;, w,) cos 0; dw;

IEhemi 33
Reflected Light Emission Reflected Light BRDF incident angle

UNKNOWN KNOWN UNKNOWN KNOWN KNOWN

* Fredholm Integral Equation of the second kind (extensively studied) given in canonical form

with kernel k(u, v) by:
() = e(w) + [l(v)

Aside: Participating Media
e “Air” typically contains participating
media (e.g. dust, droplets, smoke, etc.)

e L should be defined over all of 3D space

e The incoming light should be considered
in a sphere centered around each point in
3D space

e Neglecting this assumes that “air” is a
vacuum

e This restricts L to surfaces

Discretization (of the integral equation)

« Choose p points, each representing a chunk of surface area (or chunk of volume
for participating media), which is a 2D (or 3D) discretization
* For each of the p points: Choose g outgoing directions, each representing a

chunk of solid angles of the hemisphere (or sphere), which is a 2D discretization
* g can vary from surface chunk to surface chunk

* L, and L, then each have p * g unknowns, a 4D (or 5D) discretization
* They can thus be represented by vectors: L and E, each with length p * q

* The light transport “kernel” matrix K has size p * g by p * g

* The linear system of equationsis:L =E + KLor (I — K)L =E

eSolution: L=(U—-K)'E={U+K+K?+--)E

 Since K bounces only a fraction of the light (the rest is absorbed), higher powers
are smaller (and the series can be truncated)

Power Series

L=E+KE+K*E +K’E + -

Emission directly
from Light Sources

Direct lllumination
(light bounces

only once) Global [llumination
(indirect lighting,
two bounces) Global
Illumination Etc.
(indirect lighting,
three bounces)

Power Series

Tractability

* A (typical) scene might warrant thousands or tens of thousands of area chunks
* So, p could be 1e3, 1e4, 1e5, 1e6, etc.

* Incoming light could vary significantly across the hemisphere
* So, ¢ might need to be 1e2, 1e3, 1e4, etc.

e L and E would then range in length from 1e5 to 1e10
* The matrix K would then range in size from 1e5 by 1e5 up to 1e10 by 1e10

* K would have between 1e10 and 1e20 entries!
* This tractability analysis is for the 4D problem (5D is even worse)

* The curse of dimensionality makes problems in 4D and 5D (and higher) hard to
discretize (with numerical quadrature)

Addressing Tractability

* |dea: separate the diffuse and specular contributions (to be treated separately)

Diffuse:

* Assume all materials are purely diffuse (i.e. no specular contributions)
* Compute the view-independent global illumination for the entire scene
* This can be done in a pre-processing step

Specular:

 Compute (view-dependent) specular illumination on-the-fly as the camera moves
* Use Phong Shading (or any other model)

Radiosity and Albedo

e Radiosity: power per unit surface area leaving a surface (similar to irradiance, but outgoing
instead of incoming):

dd
B(x) = f L,(x,w,)cosB,dw,
dA hemi
* When L, is independent of w, (i.e. purely diffuse):
dd
B(x) = T —S cos 0, dw, = mL(x)

hemi
* Albedo: a “reflection coefficient” relating incoming light hitting a surface patch (irradiance E;)

to outgoing light emitted in all possible directions

p(x) = f BRDF (x, w,, w;) cos 8, dw,
hemi

* When the BRDF is independent of w, and w; (i.e. purely diffuse):

p(x) = BRDF(x) cos 8, dw, = m BRDF (x)

hemi

(Purely Diffuse) Lighting Equation
* Given L, (x, wo) = Le(x, wo) + [, ;. Lo(x', —w;) BRDF (x, w;, w,) cos 0; dw; , multiply
through by cosf,dw, and integrate over the hemisphere (i.e. dw,) to obtain:

B(x) =E(x) + j B(x")BRDF (x, w;, w,) cos 8; dw;
iEhemi
* Bis a 2D function (of x), whereas L was a 4D function (of x and w,)

* Then, assume that all surfaces have a diffuse BRDF independent of angle:

B(x) = E(x) + @ B(x") cos 6; dw;

lEhemi

Recall: Solid Angle vs. Cross-Sectional Area

* The (orthogonal) cross-sectional area is dA cos6

dA dA cos® , .. BagenIgs :
¢ So,dw = —L* = CZOS (solid angle varies with tilting 8 and distance 7)
T &

S

unit
sphere

surface

patch i

Interchange Solid Angle and Surface Area

dA cosO . __dA' cosb,
* Note: dw = —=—gives dw; = e
° S B — M / . . 1Q
o, B(x) = E(x) + " iehemiB(x) cos ; dw; is:
cos 8; cos 6
B(x) = E(x) + p(x) B(x") l - dA’

ichemi T||x — x,”%

e Let V(x,x") = 1 when x and x’ are mutually visible (and
V(x,x") = 0 otherwise), then:

cos 0; cos 6,

!

B(x) = E(x) + p(x) B(x")V(x,x") =
all x' T[||X — X ”2

A Tractable Discretization

* Choose p points, each representing a chunk of surface area (a 2D discretization)
cos 6;cos 0

* Then B; = E; + p; 2. j+; Bj Fij with a purely geometric F;; = V(xi;xj) e j
i—Xj]l,,

* Rearrange to B; — p; ZjiiBj Fi; = E; and put into matrix form:

1 —pi B TSP Py B4 Eq
—p2F>1 1 st el 0 % B, E,

_pprl _pprz oo 1 Bp Ep

* For p ranging from 1e3 to 1e6: B and E have the same size, and the matrix has 1e6 to 1lel2
entries (still large, but 1e4 to 1e8 times smaller than previously)

Form Factor

* Write Fj; = V(xl, x]) S and Fi; = V(xl-, xj) % with
J

(symmetric) form factor.

i cos 6; cos 6,
Fij —_ > ALA]
||xi =],

Surface |

N

* Fjj represents how the light energy leaving one surface

impacts the other surface, and vice versa (and only
depends on the geometry, not on the light)

Surface i

* The visibility between between x; and x;, i.e. V(xi, xj),
also only depends on the geometry (and can be included
into F;; if desired)

Understanding the Form Factor

* Place a unit hemisphere at a surface point x;

*Project the other surface onto the hemisphere, noting

dA cosf . A;cosO;
that dw = gives ————— as the result

lei=2; [,
* Project the result downwards onto the circular base
of the hemisphere, which multiples by cos 6;

r2

* Recall |. .cos 0; dw; = m, the area of the unit circle
i€hemi : ¢

* Divide the result by the total area to get the
fraction of the circle occupied

cos B;cos 6

* Overall, this gives: F;; = TR “2 j
i—%j]l,

Implementation

* Create a hemicube, and divide each face into sub-
squares (as small as desired)

* For each sub-square, use hemisphere projection (from
the last slide) to pre-compute its contribution to Fj;

* Place the hemicube at a surface point x;

* A surface patch (from another object) is projected onto
the hemicube in order to approximate F;; (using the pre-
computed values for the sub-squares)

* The five hemicube faces can be treated as image planes
and the sub-squares as pixels, making this equivalent to
scanline rasterization

* The depth buffer can be used to detect occlusions,
which are used the visibility term

Hemicube Scanline Rasterization

Iterative Solvers

* For large matrices, iterative solvers are typically far more accurate than direct methods (that
compute an inverse)
* [terative methods start with an initial guess, and subsequently iteratively improve it

e Consider (i ;) (;C,) = (180) with exact solution (;) - (i)

e Start with an initial guess of (;C,) 5 (8)

* Jacobi iteration (solve both equations using the current guess):

ld ld
2 2

new

el 4

e Gauss Seidal iteration (always use the most up to date values):

8_ycurrent 1O_xcurrent

current — current =

. X and vy

2 2

Jacobi vs. Gauss-Seidal

Iteration Jacobi Gauss Seidel
y
1 0 0 0 0
2 4 5 4 3
3 1.5 3 25 3.75
4 25 4.25 2.125 3.9375
5 1.875 3.75 2.03125 3.984375
6 2.125 4.0625 2.007813 3.996094
7 1.96875 3.9375 2.001953 3.999023
8 2.03125 4.015625 2.000488 3.999756
9 19921875 3984375 2.000122 3.999939
10 2.0078125 4.00390625 2.000031 3.999985
11 1.998046875 3.99609375 2.000008 3.999996
12 2.001953125 4.000976563 2.000002 3.999999
13 1.999511719 3.999023438 2 4
14 2.000488281 4.000244141 2 4
15 1.99987793 3.999755859 2 4
16 2.00012207 4.000061035 2 4
17 1.999969482 3.999938965 2 4
18 2.000030518 4.000015259 2 4
19 1.999992371 3.999984741 2 4
20 2.000007629 4.000003815 2 4

Better Initial Guess

Iteration Jacobi Gauss Seidal
1 2 3 2 3
2 25 4 25 3.75
3 2 3.75 2.125 3.9375
4 2.125 4 2.03125 3.984375
5 2 3.9375 2.007813 3.996094
6 2.03125 4 2.001953 3.999023
7 2 3.984375 2.000488 3.999756
8 2.0078125 4 2.000122 3.999939
9 2 3.99609375 2.000031 3.999985
10 2.001953125 4 2.000008 3.999996
11 2 3.999023438 2.000002 3.999999
12 2.000488281 4 2 4
13 2 3.999755859 2 4
14 2.00012207 4 2 4
15 2 3.999938965 2 4
16 2.000030518 4 2 4
17 2 3.999984741 2 4
18 2.000007629 4 2 4
19 2 3.999996185 2 4
20 2.000001907 4 2 4

lterative Radiosity

e Gathering - update one surface by collecting light energy from all surfaces
e Shooting - update all surfaces by distributing light energy from one surface
e Sorting and Shooting - choose the surface with the greatest un-shot light energy and use
shooting to distribute it to other surfaces
e start by shooting light energy out of the lights onto objects (the brightest light goes first)
e then the object that would reflect the most light goes next, etc.
e Sorting and Shooting with Ambient - start with an initial guess for ambient lighting and do
sorting and shooting afterwards

QQ\M;/ ‘X\ A\\\ ///
bl |

Gathering Shooting

X X
XX XX XX || X X
X X
X X
X X
X X

o
+

]

PA P4 4 K pd K

lterative Radiosity

