Texture Mapping

1;25;1 sg;ﬁf: (-m:m- s'ol'AS'l’E

e || (&)

Drlﬂ‘lw JDnm(lle'].
| L ‘ L \

Texture Mapping

* Adds back the details lost by assuming that the BRDF doesn’t vary along an object’s surface
* These RGB reflectance modifications are stored as an image (called a texture)
* The image colors are mapped to the object’s surface (one triangle at a time)

For egch triangle in the model
establish 3 corresponding region
g\ In the phototexture

5 LS
oy vy
R ¥

Similar to Putting on Stickers

Texture Coordinates

* A texture image is defined in a 2D coordinate system: (u, v)

* Texture mapping assigns a (u, v) coordinate to each triangle vertex

* Then, the texture is “stuck” onto the triangle (potentially, with distortion):
* Let p be a point inside the triangle, with barycentric weights «a, a4, a>
* The color assigned to p is the texture color at (up, vp) = ag(ug, vo) + @y (uqy, v1) + ay(uy, vy)
* That is, texture coordinates are barycentrically interpolated

texture image

2 triangles

Recall: Screen Space vs. World Space Barycentric Weights

Express the pixel p’ terms of its screen space barycentric weights: |, a1, a5
Express the point p that projects to p’ in terms of unknown world space barycentric weights: a,, a4, o>

Project p into screen space and set the result equal to p’
Solve for a,, a1, @, to obtain:

% Z122“6
aO B / / /
Z1Z0y+ZgZo Ay +ZZ1 A,

ZoZy Q)
al a3 / / /
Z1Z0y+ZoZo A +Z0Z1 A,

/

Z0Z1a2

az —

Z1Zo Q) +Z0Zo A1 +ZgZ1 A

Screen Space vs. World Space Barycentric Weights

 Perspective transformation (nonlinearly) changes triangle shape
* Interpolating texture coordinates in screen space (nonlinealy) distorts textures

Ny

texture screen space B.W. mesh refinement helps (less z variance per triangle) world space B.W.

Texture Distortion

* Consider a single edge of one triangle
* Uniform increments (along the edge) in screen space do not correspond to uniform increments
in world space

screen

projection

\

>

-> triangle’s

C 't/\./(1

screen

Interpolating from the Texture Image

. (up, vp) is surrounded by 4 pixels in the texture image

* Use bilinear interpolation to interpolate values for: R, G, B, «, etc.
* First, linearly interpolate in the u direction; then, in the v direction (or vice versa)

T(up,vp) =1 —a)(1 —b)T;; +a(l — BT g+ (1 — @)bT; 41 + abTiyq 14q

" P . P— Th+1j+1]

A I, 7+ 1 Tt +1,7 + 1]

o e
- [] ® -

. | “..@®
- ® - -
b N

. . * . Tli+1

.-A,'. o B . ..v.. .

i, - - .)

Ps . * PR ["-.1, I 1571 T

texture image close-up view (of 4 surrounding pixels) bilinear interpolation

Assigning Texture Coordinates

* Assign texture coordinates on complex objects one part/component at a time

Assigning Texture Coordinates

- Manually assigning (u, v) one vertex at a time can be tedious

* For some surfaces, the (u, v) texture coordinates can be generated procedurally
* E.g. Cylinder (wrap the image around the outside)

* map the [0,1] values of the u coordinate to [0,2m] for ¢

* map the [0,1] values of the v coordinate to [0, h] for y

e Assign texture coordinates to proxy objects:

Proxy Objects — Step 1

* Example: Cylinder
* wrap texture coordinates around the outside of the cylinder
* not the top or bottom (to avoid distorting the texture)

* Example: Cube
e unwrap cube, and map texture coordinates over the unwrapped cube
* texture is seamless across some of the edges, but not other edges

~

-5

)

t
A

S

Back

Left

Botton\ Right

Top

Front

Proxy Objects — Step 2

* Transfer texture coordinates from the proxy object to the final object
e Various ways of doing this:
* Use the proxy object’s surface normal
* Use the target object’s surface normal
e Use rays emanating from a “center”-point/line of the target or proxy object

Distortion

e Difficult to find low-distortion mappings (back and forth) from a 2D plane to 3D surfaces

DEBUG with checkerboard textures

s B = —
EEEEE N
EEEE RN
|
i

Y5
i}

g HHERN Ny

Aliasing

 Textures often alias when viewed from a distance

incorrect correct

Aliasing

e Aliasing occurs when the sampling frequency is too low compared to the texture resolution
(which is the signal frequency)

e At an optimal distance, there is a 1 to 1 mapping from triangle pixels to texture pixels (texels)
* At closer distances, triangle pixels (correctly) interpolate from texels
* At far distances, a triangle pixel should average together several texels

 But, interpolation ignores all but the neighboring texels (resulting in aliasing)

1 to 1 (optimal) pixel interpolates from texels pixel should use multiple texels

MIP Maps

* Multum in Parvo (much in little)

* Precompute texture images at multiple resolutions, using averaging as a low pass filter

* Averaging “bakes-in” all the nearby texels that are otherwise interpolated incorrectly

* When texture mapping, choose the image size that (approximately) gives a 1 to 1 pixel to texel
correspondence

MIP Maps

4 neighboring texels of one level are averaged to form a single texel at the next level
: 1% 1 4 ; : 132
e Since 1 + = + = S — 3+ can store all coarser resolutions with 1/3 additional space

© Q

OO LOQOD OO

Q000

000
O 0D0DOO0O0D0OO

O0OD0DOQCOODO
OO0 O0CQCQOO0
Q00O 00
Oo0OCCOO0O0OO0
O0OD0OCO0 000

Using MIP Maps

* Find the MIP map image just above and just below the screen space pixel resolution

* Use bilinear interpolation on both MIP map images

* Linearly interpolate between the two results (with weights based on comparing the screen
space resolution to that of the two MIP map images)

Pooe-

point sampling

fgg}é%% S SSTEN

using mip-maps

RIP Maps

* A triangle tilted away from the camera has different texel sampling rates in the horizontal and
vertical directions

* MIP map images can only match one of the two sampling rates

* Anisotropic RIP maps are designed to account for this
* RIP maps require 4 times the storage:

(1434 o+)[1+2(5+5+5+)| =4

RIP map

