
Texture Mapping



Texture Mapping
• Adds back the details lost by assuming that the BRDF doesn’t vary along an object’s surface
• These RGB reflectance modifications are stored as an image (called a texture)
• The image colors are mapped to the object’s surface (one triangle at a time)



Similar to Putting on Stickers 



Texture Coordinates
• A texture image is defined in a 2D coordinate system: (𝑢, 𝑣)
• Texture mapping assigns a 𝑢, 𝑣 coordinate to each triangle vertex
• Then, the texture is “stuck” onto the triangle (potentially, with distortion):

• Let 𝑝 be a point inside the triangle, with barycentric weights 𝛼!, 𝛼", 𝛼#
• The color assigned to 𝑝 is the texture color at 𝑢$, 𝑣$ = 𝛼! 𝑢!, 𝑣! + 𝛼" 𝑢", 𝑣" + 𝛼#(𝑢#, 𝑣#)
• That is, texture coordinates are barycentrically interpolated

texture image 2 triangles

(0,0)

(0,1)

(1,1)

(0,1)



Recall: Screen Space vs. World Space Barycentric Weights

• Express the pixel 𝑝% terms of its screen space barycentric weights: 𝛼!% , 𝛼"% , 𝛼#%
• Express the point 𝑝 that projects to 𝑝% in terms of unknown world space barycentric weights: 𝛼&, 𝛼", 𝛼#

• Project 𝑝 into screen space and set the result equal to 𝑝%
• Solve for 𝛼&, 𝛼", 𝛼# to obtain:

𝛼! =
"!""##$

"!""##$$"#""#!$$"#"!#"$
 

𝛼% =
"#""#!$

"!""##$$"#""#!$$"#"!#"$
 

𝛼& =
"#"!#"$

"!""##$$"#""#!$$"#"!#"$
 



Screen Space vs. World Space Barycentric Weights
• Perspective transformation (nonlinearly) changes triangle shape
• Interpolating texture coordinates in screen space (nonlinealy) distorts textures

screen space B.W. mesh refinement helps (less 𝑧 variance per triangle) world space B.W.texture



Texture Distortion
• Consider a single edge of one triangle
• Uniform increments (along the edge) in screen space do not correspond to uniform increments 
in world space



Interpolating from the Texture Image
• 𝑢(, 𝑣( is surrounded by 4 pixels in the texture image
• Use bilinear interpolation to interpolate values for: R, G, B, 𝛼, etc.
• First, linearly interpolate in the u direction; then, in the 𝑣 direction (or vice versa)

texture image close-up view (of 4 surrounding pixels) bilinear interpolation

𝑇 𝑢*, 𝑣+ = 1 − 𝑎 1 − 𝑏 𝑇,,- + 𝑎 1 − 𝑏 𝑇,./,- + 1 − 𝑎 𝑏𝑇,,-./ + 𝑎𝑏𝑇,./,-./



Assigning Texture Coordinates
• Assign texture coordinates on complex objects one part/component at a time



Assigning Texture Coordinates
• Manually assigning 𝑢, 𝑣  one vertex at a time can be tedious

• For some surfaces, the (𝑢, 𝑣) texture coordinates can be generated procedurally
• E.g. Cylinder (wrap the image around the outside)
• map the [0,1] values of the 𝑢 coordinate to [0,2𝜋] for 𝜙
• map the 0,1  values of the 𝑣 coordinate to [0, ℎ] for 𝑦

𝜙

𝑦



Proxy Objects – Step 1 
• Assign texture coordinates to proxy objects:
• Example: Cylinder
• wrap texture coordinates around the outside of the cylinder
• not the top or bottom (to avoid distorting the texture)

• Example: Cube
• unwrap cube, and map texture coordinates over the unwrapped cube
• texture is seamless across some of the edges, but not other edges 



Proxy Objects – Step 2 
• Transfer texture coordinates from the proxy object to the final object
• Various ways of doing this:
• Use the proxy object’s surface normal
• Use the target object’s surface normal
• Use rays emanating from a “center”-point/line of the target or proxy object



Distortion
• Difficult to find low-distortion mappings (back and forth) from a 2D plane to 3D surfaces



DEBUG with checkerboard textures



Aliasing
• Textures often alias when viewed from a distance 

incorrect correct



Aliasing
• Aliasing occurs when the sampling frequency is too low compared to the texture resolution 
(which is the signal frequency)

• At an optimal distance, there is a 1 to 1 mapping from triangle pixels to texture pixels (texels)
• At closer distances, triangle pixels (correctly) interpolate from texels
• At far distances, a triangle pixel should average together several texels
• But, interpolation ignores all but the neighboring texels (resulting in aliasing)

1 to 1 (optimal) pixel interpolates from texels pixel should use multiple texels



MIP Maps
• Multum in Parvo (much in little) 
• Precompute texture images at multiple resolutions, using averaging as a low pass filter
• Averaging “bakes-in” all the nearby texels that are otherwise interpolated incorrectly
• When texture mapping, choose the image size that (approximately) gives a 1 to 1 pixel to texel 
correspondence



MIP Maps
• 4 neighboring texels of one level are averaged to form a single texel at the next level
• Since 1 + %

)
+ %
%*
+⋯ = )

+
 , can store all coarser resolutions with 1/3 additional space



Using MIP Maps
• Find the MIP map image just above and just below the screen space pixel resolution
• Use bilinear interpolation on both MIP map images
• Linearly interpolate between the two results (with weights based on comparing the screen 
space resolution to that of the two MIP map images)



RIP Maps
• A triangle tilted away from the camera has different texel sampling rates in the horizontal and 
vertical directions
• MIP map images can only match one of the two sampling rates
• Anisotropic RIP maps are designed to account for this RIP map

MIP map

• RIP maps require 4 times the storage:
1 + %

)+
%
%*+⋯ 1 + 2 %

&+
%
)+

%
,+⋯ = 4	


