More Texture Mapping




Recall: (Averaged) Vertex Normals

* Each vertex belongs to a number of triangles, each with their own normal
* Averaging those normals (weighted averaging, based on: area, angle, etc.) gives a unique
normal for each vertex




Recall: Smooth Shading

e Use barycentric weights to interpolate (averaged) vertex normals to the interior of the triangle:
],\7 = a()]vo =13 C(]_NJ_ + (levz
p = =~ ~ ~
||a0N0 + alN]_ IS a2N2||2

"

faceted
silhouette




Perturbing the Normal

e Store a normal vector in the texture (instead of a color)
* This perturbed normal can “fake” geometric details

using real normal using fake normal



Bump Map

Single-channel (grey-scale) height map h;;, representing the height at location (u;, vj)

oh
The tangent plane at a point (u;, vj, h;;) is: —

(wiv)) Gty L oh(u;v;)

(v—%) +(h—hi) =0

J Al ah(ui»vj) 2.4 hij+1—hij-1

ou v
dh(u;,v; oh(u;,v;
So, the outward (non-unit) normal is: | — ( - J), = ( l ]), 1
ou v
oh(u;,v; e e
Partial derivatives are computed via finite differences: ( - J) =
du Ui+1~Uj—1

av vj+1—v]'_1




Normal Map

* A normalized vector has each component in [—1,1], so one can convert back and forth to a color via:

(RiG By pno DR ey s B2 b e By S
2 255

* Normal maps use more storage than bump maps, but require less computation

normal mapping on a plane
(note the variation in specular highlights created by variation of the normal)



Displacement Mapping

« Subdivide geometry at render time, and use a height map h(u, v) to perturb vertices in the normal
direction

* Pros: self-occlusion, self-shadowing, correct silhouettes

* Cons: expensive, requires adaptive tessellation, still need bump/normal map for sub-triangle detail

Sy - 4\/3—%

original geometry h(u,v) displacement map

bump map displacement map



Displacement Mapping

bump map displacement map



Recall: Measuring Incoming Light

* Light Probe: a small reflective chrome sphere
* Photograph it, in order to record the incoming light (at its location) from all directions




Recall: Using the (measured) Incoming Light

* The (measured) incoming light can be used to render a synthetic object (with realistic lighting)




Environment Mapping

1
Vx2+y2+z2

* Place a coordinate system at the center of the sphere, so the surface normal is: N = (x,y,2)

* R is the direction from the light probe to the camera
* Since I and R are equal-angle from N (because of mirror reflection), N has a one-to-one
correspondence with I

light probe (side view)



Environment Mapping

* Given a normal on the geometry being rendered:
* Use n, and n,, (which are in [-1, 1]) to obtain texture coordinates (u, v) = %(nx +1,n,+1)
* Then, look up the incoming light in the texture (which is a picture of the chrome sphere)




Environment Mapping




Sky Boxes

- Model the sky with a texture on the inside of geometry.




Texture Acquisition via Imaging

27 AW N LR
 SF —’




Texture Acquisition via Medical Imaging




Texture Synthesis: Pixel Based

* Create a larger texture (one pixel at a time) from a small sample (using its structural content)
e Generate the texture in a raster scan ordering
* To generate the texture for pixel p
e compare p’s neighboring pixels in the (red) stencil to all potential choices in the sample
* choose the one with the smallest difference to fill pixel p
 When the stencil needs values outside the domain, use periodic boundaries (so, fill the last few
rows/columns with random values)

P

stencil texture sample

raster scan ordering (with randomly generated periodic boundaries)



Texture Synthesis: Pixel Based

Heeger and Bergen Efros and Leung Wei and Levoy



* For each patch:
* search the original sample to find the candidate that best matches the opverlap boundaries
* choose the best candidate

* blend overlapped regions to remove “seams”

e g o I__.' - ;'
_..:.I. ".' o AL '_.:.,a
-~ ~
g o
u'-' o~ ".'
A = A
i 5
& ;
1 ]

W ot g o

.-':_.-'. __.'._.- L e * 2

L X ¥y o

Feod L S :-'.-'ff e

[ —a—

|
|
|
|
|
I|
R

Texture Synthesis: Patch Based

B

PP

R

> R

texture

matching
boundary
regions

Blending

(a)

Blending

(c)

(d)




Texture Synthesis: Patch Based

ut itbecomnes haxder o 1w
ound itself, at “this daily
wving rooms,” a5 House Det
cribed it last fall. He fai
Athe lefta riog ing questio
wxe years of Monic Lewk
inda Tripp?™ That now seex
Yolitical comedian Al Frar
xtobuse of the storv will

m.m.muiuamgnu' MM
ag quears of Mondod Les of Moaica Lewat Monica Le
nica LrippTiself itselp?” &s House Daxs otselfjw b
& nowly soms;oond el Hodrisaloma £ ye
Al Al Fditledititxelf, at"hll ool itla T

0w sing Quribedig 10QOW SO 100005, Und 123 Yieg §
Al Fanica Ibe leszibed Al Rcribed it 1zing res of hica
€ars o3ns, ¢ yeaze yeund ftself, st thag ropp?” Tey
Cripp? ft Lasts Trada Ting rooons,” as Hored comda
agiagita rieg romg rocribede lefst fald itself, atlf,:
togies of Fibed ribed be letyearnaing roomns 395,
aica Lep?™ 5 1ef™ thisce yea b leself, at "thefta sl
R now! coone yaars Hondd Trvawsvgoe.” 33 Hoctatds
an Al'bed 1u Trigan Aliticaelf, ata Lest fall itself, a2
yrars ¢ Wl Uds o eot a ound @ g T pp! roomag

\
)
)

i
(|
i)
AL
1

i

|

l
155

l
i
UN
‘U‘ﬁ A
l

)

|
£

y

|
i)
i

5
M)
ALK
15
1

AL
)
|

.i
i

|
A

f
55

B
‘,r

)

+
|

-



Don’t Stretch Textures!

« Stretching out 10 bricks to cover an entire wall of a building is going to look unrealistic!

- Instead, can tile textures if the tiles are made with periodic boundaries




Marble Texture

* Define layers of different colors
 Use a function to map layer colors to (u, v) texture locations
* For example:

marbleColor(u,v) = LayerC olor(sin(kuu + kvv))

cz,s 5 f.l ‘r "* e ?‘)-, s . Xy ‘(')- g \'ﬁ fk~ y - 'x
N S S R S

R i B . V S, SRV .V




Marble Texture

- k,, and k,, are spatial frequencies
2T

* (k,, k) determines the direction, and \/— determines the periodicity
kKi+ki

* Problem: too regular (still need to add noise/randomness)

s

N

higher frequency lower frequency

4



Perlin Noise

 Noise should have both coherency and structure, in order to look more natural
 Ken Perlin proposed a specific (and amazing!) method for doing this




Perlin Noise
* Place a 2D grid over the texture image, and assign a random (unit) gradient g(ui, vj) to each grid point
» Take a weighted average of the result:

* For each pixel, compute the dot-products between vectors from the grid corners and the corresponding gradients

) +2 u—u; Viea Uj i o3y R
noise(u,v) = 21‘:0 i _=01W( T )W( e )g(ui, vj) (u Ui, v vj)
,1;j=0,
* Cubic weighting: w(t) = 2|t|2 = 3|t|? + 1for—1 <t< 1
2
g(uq,vq) /‘/ T ' T
. 9(uo,v1) / (u,v) — (ug, v1) s
| S— ——y % 2
- g(uo, vo) \ | gQus, o)

: (_u' v) o (ul'v0)

Vectors from the grid points to (u,v)

(u,v) — (uyg,vq)
A N
(u,v) — (uo, vo)
4 pseudorandom gradients associated with the grid points




Multiple Scales

« Natural textures tend to contain a variety of feature sizes
* Mimic this by adding together noises with different frequencies and amplitudes:

perlin(u,v) = 2 noise(frequency(k) * (U, v)) * amplitude (k)
k

* Each successive noise function is twice the frequency of the previous one:
frequency(k) = 2%

* The amplitude of higher frequencies is measured by a persistence parameter (< 1)
* Thus, higher frequencies have a diminished contribution:

amplitude(k) = persistence®



1D Examples

* Smaller persistence gives less higher frequency noise and thus a smoother result

Frequency

Persistence = 1/4 et

Amplitude:

Persistence = 1/2

Amplitude:

Persistence = 1 / root2 —

Amplitude:

Persistence = 1

Amplitude:

1

2
+ —
s
4+
)
4 -
11.414
@
1

4 38 10 32
+ ——+—+ + =
116 Y64 11256 11024 result
e I —
14 1 116 132 result
ST TIPS
) 112,828 s 1/5.656 result
~ + il = vt

1 1 1 1 result

(from: http://freespace.virgin.net/hugo.elias/models/m_perlin.htm)



2D Examples




Marble Texture + Perlin Noise

 Set the value of A to scale the amount of noise:

marbleColor(u,v) = LayerColor (sin(kuu + k,v + A * perlin(u, v)))

=




3D Marble Texture

» “Carve” an object out of a 3D texture
* Marble texture function w/Perlin noise (for 3D):

marbleColor(u,v,w) = LayerColor (sin(kuu + k,v + k,w + A * perlin(u, v, W)))




3D Wood Texture

- Procedurally generate tree rings (and cut the object out of the 3D texture)

» Cylindrical coordinates for (x, y, z) object points: H =y, R = Vx2 + z2, 0 = tan™1 (—)

Top View

S

N Concentric “growth ring”

A cylinders

|~ Object point (x,y,z)

=
" from e
Object to be “carved™ from > —

wood

/




3D Wood Texture

added eccentricity

added twist




Machine Learning

I
Neural Texture Synthesis: Gram Matrix

Each layer of CNN gives C x H x W tensor of

features; H x W grid of C-dimensional vectors
Efficient to compute; reshape features from

Outer product of two C-dimensional vectors
gives C x C matrix measuring co-occurrence CxHxWto =C x HW

Average over all HW pairs of vectors, giving then compute G = FFT
Gram matrix of shape C x C

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - 57 May 10, 2017




Machine Learning

Neural Texture Synthesis & - (e -a) w,:%):iwla

1. Pretrain a CNN on ImageNet (VGG-19)

——t—
2. Run input texture forward through CNN, s12 — )
record activations on every layer; layer i ‘ > —_— 7L
gives feature map of shape C; x H; x W, s 8EL OF,
3. At each layer compute the Gram matrix o2 I 3 OFt g ( T
giving outer product of features: F;; conv4_::: - = 1_| e \:' D p | L1 u
vJ k= gk P i i 4 25 I
k e O | 1
4. Initialize generated image from random —@ ﬁ T
noise 128 R
5. Pass generated image through CNN, " I—I— conv2_ 2 - — — — — — - {—I g D D e |I }-|
compute Gram matrix on each layer ( 1
6. Compute loss: weighted sum of L2 rf’l‘;l_ — 1 L[]~ r 1
distance between Gram matrices — oL ﬁ Srediont T
7. Backprop to get gradient on image —m oi descect
8. Make gradient step on image ' p G

9. GOTO 5

Gatys, Ecker, and Bethge, “Texture Synthesis Using Convolutional Neural Networks”, NIPS 2015
Figure copyright Leon Gatys, Alexander S. Ecker, and Matthias Bethge, 2015. Reproduced with permission.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 - 61 May 10, 2017




Machine Learning
e

Neural Texture Synthesis

Reconstructing texture
from higher layers recovers
larger features from the
input texture

Gatys, Ecker, and Bethge, “Texture Synthesis Using Convolutional Neural Networks”, NIPS 2015
Figure copyright Leon Gatys, Alexander S. Ecker, and Matthias Bethge, 2015. Reproduced with permission.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 11 -62 May 10, 2017




Machine Learning




Machine Learning




Machine Learning




